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Abstract 

California’s Community Choice Aggregators (CCAs) bill allows a local government to 

form a load serving entity to compete for retail customers and electricity supply with the 

investor-owned electric utility (IOU) that operates within its jurisdiction.  In theory, CCAs could 

reduce the costs and/or enhance the speed of decarbonization of electricity supply.  In reality, a 

flawed market design, the transfer of regulatory burdens from the IOUs to the CCAs, and the 

wide variability in community capacities and motivations imperil achieving either goal.  IOU 

ownership and state regulation of distribution and transmission effectively eliminate meaningful 

price competition.  Transferring financial responsibility past electricity procurement and system 

reliability from IOUs to CCAs creates a ceiling on the greenness and a floor on the price of CCA 

power.  Devolution of electricity procurement to local communities that differ in intensities of 

preferences for green energy, local investment in generation, and lower end-user prices results in 

variation in energy portfolios and financial stability among CCAs.  We call this energy sorting, 

i.e. a self-selected grouping of energy consumers by income and commitment to decarbonization.  

This process has implications for decarbonization because CCAs often bear the responsibility for 

designing and implementing residential, transportation and commercial electrification programs.  

Some of these problems, such as finding the right scale for CCAs through creation of joint power 

agreements, are being solved.  Others, such as problematic regulation of the relationship between 

IOUs and CCAs, will require more extensive reforms. 
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The Impact of CCAs on Decarbonization in California 

by Alison Ong, Bruce E. Cain, Roger G. Noll and Rayan Sud1 

 

I.  Introduction 

CCAs are a relatively new mechanism for introducing retail competition in electricity.  

While CCAs are present in eight states, they are particularly noteworthy in California due to their 

rapid growth and high market penetration.  Between 2010, when the first California CCA, Marin 

Clean Energy (MCE), began to offer service, and 2022, 26 CCAs became operational (21 after 

2016), and eight more are in the planning stages.  By the end of 2020, the number of CCA 

customers in California exceeded 11 million, and in 2023 CCA customers are expected to 

consume 37 percent of the electricity that is distributed by investor-owned utilities (IOUs). 

A dizzying array of “load serving entities” (LSEs) provide retail electricity in California.  

The most important electricity retailers are IOUs and publicly owned (municipal) utilities 

(POUs).  In addition, several irrigation districts, a type of local government, also generate and 

retail electricity, primarily in agricultural areas.  The state classifies these entities as POUs, but 

organizationally and politically special purpose districts are very different entities than cities and 

counties that have a department that operates a local electric utility.  Another relatively new form 

of LSE is a “direct access provider” (DAP), a privately owned entity that generates electricity, 

acquires transmission and distribution from an IOU and sells electricity directly to customers 

 

1  Ong:  Doctoral student, Emmett Interdisciplinary Program in Environment and Resources, 

Stanford University.  Cain:  Charles Louis Ducommun Professor in the Humanities and Sciences, 

Professor of Political Science, and Director of the Bill Lane Center for the American West, 

Stanford University.  Noll:  Professor Emeritus of Economics, Stanford University.  Sud:  

research assistant, Lane Center for the American West, Stanford University. 
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(almost exclusively large commercial and industrial entities) in the IOU’s service territory. 

A CCA is a new form of LSE that has unique characteristics.  First, CCAs are owned by 

local governments (cities and counties), like a POU.  In most cases, multiple CCAs then band 

together through a Joint Power Agreement (JPA) to form a multijurisdictional CCA to capture 

economies of scale in procuring electricity and dealing with state government.  Both an entity 

that is created by a single city or county and the multijurisdictional JPA to which it belongs are 

called CCAs.  Second, a CCA operates in the service territory of, and competes with, the IOU 

that has a monopoly franchise to distribute electricity in the CCA’s community.  Third, a CCA 

obtains transmission, distribution, backup reliability (supplier of last resort), and billing services 

from its IOU competitor.  Fourth, a CCA procures electricity from generation and storage 

facilities that are financed by the CCA, perhaps jointly with other CCAs, other private or public 

generation entities, or both.  To summarize, a CCA is a publicly owned (municipal) utility that 

competes with an IOU on the basis of retail prices and sources of electricity.  Thus, CCAs are 

similar to DAPs, with the main difference being that the latter are private entities.2 

Until the 1980s, most electricity in the United States was generated, transmitted, 

distributed, and sold to end-users via a vertically integrated IOU that was intensively regulated 

by a state public utility commission and the Federal Power Commission (later the Federal Energy 

Regulatory Commission).  In the wake of the 1970s energy crises and the broader deregulation 

movement that began in the same decade, policy makers in federal and many state governments, 

including California, sought to introduce competition in electricity generation.  In 1996 

 

2  For more details about CCAs and DAPs in California, see the California Public Utilities 

Commission (CPUC) web page on LSEs at https://www.cpuc.ca.gov/consumer-

support/consumer-programs-and-services/electrical-energy-and-energy-efficiency/community-

choice-aggregation-and-direct-access-. 



 4 

California spread competition to retail sales by passing legislation that allowed DAPs to enter.  

After the 2001 California energy crisis, incremental electricity supply from DAPs was suspended 

and, when resumed in 2009, was strictly limited.  In 2002, to create a substitute for DAPs, 

municipal governments were given the authority to create CCAs. 

Initially, growth of CCAs was slow.  No local government took advantage of the 

opportunity to create a CCA until Marin Clean Energy (MCE) began operation in 2010.  By the 

end of 2016, only four more CCAs had entered.  Growth of CCAs accelerated thereafter, with 

four CCAs entering in 2017 and eight more in 2018.  

 

I. A.  The Rationale for CCAs 

The creation of CCAs was a reaction to the disruptive challenges faced by the electricity 

industry and its regulators during the past quarter century.  These challenges include: (1) climate 

change and its harmful effects, including wildfires caused by power lines;  (2) high and rising 

retail prices of power;  and (3) controversies over siting generation and transmission facilities. 

One rationale for CCAs is that direct competition for customers might speed progress in 

attaining the state’s ambitious plan to decarbonize the California economy by 2045.  This plan 

implicates electric utilities in two ways.  First, generating electricity by burning hydrocarbon 

fuels accounts for about 16 percent of greenhouse gas (GHG) emissions in California.3  Hence, 

to achieve total decarbonization, electric utilities must find clean power sources for roughly half 

of current sales.  Second, an even greater challenge arises because decarbonization requires 

substituting electricity for most fossil fuel uses in transportation, appliances, heating, and 

 

3 GHG emissions data from California Air Resources Board, “Current California GHG Emission 

Inventory Data,” 2022 Edition, available at:  https://ww2.arb.ca.gov/ghg-inventory-data. 
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industrial processes.  Satisfying the increase in demand from the transition away from fossil fuels 

requires increasing electricity output by about 80 percent by 2045.4  Thus, a potential benefit of 

CCAs is to facilitate decarbonization by increasing investment in clean generation. 

A second potential benefit of CCAs is to reduce the costs and increase the reliability of 

electricity compared to IOUs.  While Californians are not unique in their concern that regulated 

monopoly utilities do not aggressively minimize the cost of procuring an adequate supply of 

electricity, recent history has made this issue especially salient in California.  Electricity prices in 

California are the second highest in the U.S. (lower than only Hawaii).5  Moreover, after 

restructuring created a vertically segmented and less regulated electricity generation industry, 

California’s IOUs decided not to procure a substantial fraction of their electricity through long-

term contracts – a decision that regulators did not challenge.6  As a result, California experienced 

a series of energy crises in which IOUs, to equate supply and demand, were forced to institute 

rolling blackouts and brownouts, to procure a substantial fraction of electricity in deregulated 

spot markets at extremely high prices, and to rely on state subsidies for purchasing electricity.7 

 

4  California Air Resources Board, Draft 2022 Scoping Plan Update, May 10, 2022, p. 161, at:  

https://ww2.arb.ca.gov/sites/default/files/2022-05/2022-draft-sp.pdf. 

5  Energy Information Administration, Energy Power Monthly, December 22, 2022, Table 5.6.A, 

at:  https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a. 

6  For a discussion of how and why the California energy crises of 1998 through 2001 was made 

worse by FERC and CPUC regulation, see Wolak (2003). 

7  In the short run, energy supply and demand are both highly price-inelastic, which means that in 

the wake of a demand or supply shock reliance on the spot market can cause wholesale prices to 

soar.  The extent to which this threatens the financial viability of a utility depends on the fraction 

of its power that is acquired through long-term contracts.  After restructuring IOUs procured a 

small fraction of their electricity through long-term contracts.  Hence, the combination of excess 

demand and transmission bottlenecks created an opportunity for some electricity suppliers to 

withdraw supply to force prices even higher.  Due to these and other factors, between the 

summer of 1999 and the summer of 2000, wholesale purchases of electricity in California rose 
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A third potential benefit of a CCA to a local community is to steer procurement of 

electricity to generation and storage facilities that are located locally.  While the main political 

attraction of this possibility is to stimulate local investment and employment, another potential 

benefit is to reduce reliance on strained long-distance transmission capacity.  Of course, the 

potential magnitude of this benefit depends on the extent to which the CCA is in or near an area 

where local climate and geography are favorable for clean generation and storage facilities. 

The feasibility of these benefits depends on the ability of a CCA to supply power at lower 

cost than the IOU against which it competes for customers.  Only then can a CCA offer cost 

savings to its customers or generate rents that can be used to procure more clean power – or more 

locally generated power – than would minimize total costs.  But CCAs may not outperform IOUs 

in procuring clean energy for three reasons. 

First, like some POUs, even if CCAs may be able to supply clean energy at lower costs 

than an IOU, they may not spend this saving on setting lower prices, accelerating procurement of 

clean energy, or encouraging local energy investments.  Instead, the cost saving may be passed 

back to the local government to pay for other government activities. 

Second, most cities that create a CCA may be too small to capture economies of scale in 

procuring power and in dealing with state regulators.  To achieve minimum efficient scale, CCAs 

can join a JPA, but doing so attenuates their ability to control the composition and location of 

their portfolio of power sources and their retail prices. 

Third, even if the first two challenges are overcome, CCAs still must procure services 

from a monopoly IOU at rates that are determined by the CPUC.  Ultimately, the rate-setting 

 

from $2 billion to $9 billion, mostly due to an increase in the market power of generators 

(Borenstein, Bushnell and Wolak 2002). 
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process of the CPUC and IOU will determine whether cost-savings are available for advancing 

the CCA’s objectives or are simply captured by the IOU in its charges to the CCA. 

 

I. B.  Overview of CCA Performance 

The early performance of CCA procurement is widely regarded as having accelerated the 

transition to clean electricity.  CCAs signed renewable energy procurement contracts that helped 

to finance many renewable generation and storage facilities.  The supply portfolios of some 

CCAs have higher proportions of renewable energy than the portfolios of their IOU competitor.  

A few CCAs offer 100 percent green energy as their default plan.  Nevertheless, the effect of 

CCAs on the performance of the California electricity industry is not clear for two reasons. 

First is heterogeneity among CCAs.  In 2018, for example, MCE’s default service offered 

61 percent clean energy, while King City’s default plan had 27 percent clean energy.  Thus, 

some but not all CCAs sell cleaner power.  Below we document diversity among CCAs in 

providing clean electricity and explore its implications as more CCAs enter the industry. 

Second, CCAs appear to have adversely affected renewable procurement by IOUs.  The 

exodus of customers from IOUs to CCAs initially left IOUs with excess procurement of 

renewable energy.  Between 2017 and 2018, PG&E’s default portfolio rose from 33 percent to 

39 percent renewable and SCE’s from 32 percent to 36 percent.  Both were far above the state 

average of 31 percent, causing IOUs to deliver cleaner power than some CCAs.  By 2020, both 

IOUs had reduced the percentages of renewables in their default portfolios to 31 percent, 

compared to the statewide average of 33 percent.  Evidently, as explored in detail below, some 

CCAs surged ahead in decarbonization, but they may have slowed progress by IOUs. 

Aside from the issue of CCAs contributions to renewable procurement, flaws and 
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vulnerabilities in their design have become apparent.  While many CCAs initially had lower rates 

than their IOU competitors, this price advantage has disappeared.  Mounting reliability concerns 

due to recurring crises from excess demand for power have prompted imposition of more 

demanding long-term contract obligations, which limit CCA procurement options.  As a result, 

some CCAs have become financially precarious.  Western Community Energy went bankrupt in 

2020, two of the three original members of Desert Community Energy pulled out amidst cost 

concerns, and two cities accounting for more than half of electricity delivery by the Orange 

County Power Authority are considering leaving it because its power is neither green nor cheap. 

 

I. C.  Contribution to the Literature 

Past research on California CCAs largely focused on their use of green power, and 

concluded that CCAs have procured more clean electricity than is required by California’s 

renewable portfolio standard (RPS), which in turn has led to IOU overcompliance (Trumbull et 

al. 2019).  In addition, previous work explores some sociopolitical aspects of the formation of 

CCAs, such as coalition-building (Hess 2019) and diverse community motivations for CCA 

formation (Gunther and Bernell 2019).  

This paper extends prior research by examining in greater detail the effect of the growth 

of CCAs on the speed and efficiency of decarbonization.  We address this issue by asking the 

following questions:  what types of communities form a CCA, how are CCAs organized, how do 

CCAs procure electricity, and how have CCAs performed with respect to the cost and extent of 

decarbonization of electricity supply? 

In assessing the track record of CCAs during their first decade of operations, we find that 

CCAs have serious performance and financial problems that are the result of flawed state 
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policies, including the design of both retail and wholesale power markets and the economic 

regulation of transactions between IOUs and CCAs.  Specifically, CCAs are disadvantaged by 

the structure of their relationships with IOUs and the CPUC because:  (1) IOUs are monopoly 

suppliers of essential inputs to competing CCAs;  (2) the CPUC is required by law not to 

undermine the financial viability of IOUs, but not CCAs;  and (3) the CPUC’s regulatory process 

is designed to give substantial influence to other organized private interests, such as the electric 

generation industry and large industrial and commercial customers. 

Another contribution of the paper is to identify the factors that influence the formation 

and operation of CCAs.  CCAs are most likely to be created in communities that are wealthier, 

more liberal, and more supportive of environmental policy.  We refer to this stratification as 

energy sorting.  The significance of energy sorting is that, under current policies, CCAs are risky 

and perhaps unsustainable ventures for many communities.  This has important consequences for 

overall progress toward statewide decarbonization goals as well as for environmental justice.  

Energy sorting implies less inclusion of disadvantaged communities in decarbonization efforts 

and raises a question about the fairness of the distribution of legacy financial burdens between 

(more privileged) CCA customers and (less privileged) residual IOU customers. 

The rest of the paper proceeds as follows.  Section II explains how CCAs are a product of 

the institutional and economic conditions that were present when they were formed, culminating 

in a comprehensive explication of the energy sorting concept.  Section III develops empirical 

tests for the presence and consequences of energy sorting.  Section IV introduces the data, and 

Section V presents results of the tests.  Section VI discusses social/policy implications as they 

relate to the broader energy transition. 
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II.  Retail Competition in California  

The introduction of retail competition was the final step in restructuring the electric 

power industry.  In California, DAPs were authorized to enter the industry in 1996 (P.U. Code 

Section 365.1).  Although some policy makers expected that many customers would quickly 

switch from IOUs to retail competitors, by 2000 only about 3 percent of retail customers 

(accounting for 12 percent of load) had chosen an alternative provider (Joskow 2001).  

 

II. A.  Retail Competition after the Energy Crisis 

During the California energy crisis of 2000–2001, the state’s largest IOUs faced 

bankruptcy because of their reliance on spot market purchases of wholesale electricity and the 

enormous gap between unregulated wholesale prices and regulated retail prices.  California 

responded by authorizing the state Department of Water Resources to issue bonds to finance 

long-term contracts for electricity for distribution by IOUs.  To assure that large customers 

would not undermine the ability of the IOUs to pay off these bonds, the state passed legislation 

to suspend the authority of DAPs to add new customers or otherwise to increase their sales.8  

State officials declared:  “To sell the bonds with the investment grade ratings required by law, it 

will be necessary to control the conditions under which ratepayers (generally large users, such as 

industrial customers) `exit the system,' and such controls and conditions are needed to ensure 

those who depart pay their `fair share' of costs incurred on their behalf, and thus to prevent the 

remaining ratepayers (generally small commercial and residential users) from being left to 

shoulder a disproportionate share of the costs incurred by DWR on behalf of all existing 

 

8  See https://docs.cpuc.ca.gov/publishedDocs/published/NEWS_RELEASE/14112.htm. 
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ratepayers.”9  According to the CPUC, allowing DAPs to grow would lead to an unstable IOU 

customer base, and because customers of DAPs were not previously liable for DWR surcharges, 

allowing continued switching would lead to cost shifts. Therefore, “It is not in the public interest 

to permit customers to switch from utility bundled electric service to direct access service.”10 

 The decision to suspend DAPs was controversial, so a year later the legislature passed 

AB117, which permitted the formation of CCAs.  In implementing AB117, the CPUC was 

primarily concerned with establishing measures to ensure that CCA customers continue to pay 

for recovering legacy costs, including the DWR bonds (CPUC D. 04-12-046).  Rather than re-

authorize competitive private suppliers of electricity, AB117 enabled local governments to 

become new participants in energy procurement, defined as:  “Any city, county, or city and 

county” or “Any group of cities, counties, or cities and counties… through the formation of a 

joint powers agency” (AB117 SEC 2, also Public Utilities Code section 331.1). 

In 2006 some communities in San Joaquin County attempted to form the first CCA, but 

the entity never became operational.  The organizers alleged that unlawful marketing efforts by 

PG&E caused potential members to drop out and prevented a successful launch (CPUC D. 08-

06-016).  The entry of MCE in 2010 prompted the passage of SB790 in 2011 to establish a code 

of conduct for interactions between IOUs and CCAs.  The bill aimed to mitigate behavior by 

IOUs that would deter CCA formation.  Passage of this law had no discernible immediate effect 

as the second CCA, Sonoma Clean Power, was not launched until 2014. 

 

9  CPUC Decision 01-10-036, Order Modifying Decision (D.) 01-09-060, And Denying 

Rehearing, As Modified, October 10, 2001, Section II.B.2, at: 

https://docs.cpuc.ca.gov/published/Final_decision/28204-01.htm. 

10 CPUC Decision 01-09-060, Interim Opinion Suspending Direct Access, September 20, 2001, 

at: https://docs.cpuc.ca.gov/PublishedDocs/WORD_PDF/FINAL_DECISION/9812.PDF. 
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II. B.  CCA Formation and Energy Sorting 

Borenstein and Bushnell (2015) note that since 2002, “the policy focus for the electricity 

industry has turned… mostly towards environmental concerns – and the loud debates from the 

early 2000s over the merits of restructuring have been reduced to a background murmur.”  In 

2002, soon after the energy crisis, California enacted SB1078, the first of a series of bills that 

established ever more ambitious targets for renewable energy sales by electric utilities.11 

The entry of CCAs was encouraged by the change in state policy objectives from 

reducing costs to accelerating decarbonization.  MCE explicitly cited decarbonization as the 

driving force behind its founding.  “Recognizing the opportunity to increase access to renewable 

energy and combat climate change on a local level, Rebekah Collins, co-Founder of Sustainable 

Fairfax, brought AB117 to the attention of the Marin County Board of Supervisors and Fairfax 

Town Council.”12  Now that over a decade has passed since CCAs began to operate, we can 

begin to evaluate how CCAs perform as alternative providers of electricity. 

As California’s commitment to decarbonization strengthened, several CCAs became 

operational between 2016 and 2020.  As explored in greater detail in the next section, cities and 

counties varied substantially in their enthusiasm for creating a CCA, leading to socioeconomic 

sorting of communities according to whether they created a CCA. 

Socioeconomic (including racial) sorting is a long-standing feature of California’s 

neighborhoods and local jurisdictions due in part to the legacy of past municipal incorporation 

patterns and real estate redlining practices (Miller, 1981;  Rothstein, 2017).  More recently, 

 

11 For the history of California’s renewable energy standards for electric utilities, see California 

Public Utilities Commission, “Renewables Portfolio Standard Program,” accessed at 

https://www.cpuc.ca.gov/rps/. 

12  Marin Clean Energy, “Our History,” accessed at: https://www.mcecleanenergy.org/about-us/. 
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NIMBYism regarding all forms of public infrastructure, residual racism, and Tiebout-like 

(“voting with your feet”) political sorting tended to preserve and extend socio-economic 

stratification.  Allowing communities to act unilaterally or multilaterally through Joint Power 

Authorities for the purposes of energy procurement is likely to produce local variation in energy 

consumption that reflects the underlying pattern of political and socioeconomic clustering. 

This form of clustering has consequences for energy policy.  Predominantly liberal 

Democratic communities tend to favor more aggressive decarbonization policies than 

conservative Republican communities.  Wealthier jurisdictions have fewer residents who default 

on their energy bills and more technical capacity to negotiate energy contracts, to manage a plan 

to investment in generation and storage, and to apply for state and federal government grants to 

support decarbonization.  Wealthier municipalities also tend to have more influence in state 

politics, including lobbying to secure favorable terms and conditions for state subsidies (Payson 

2020).  As a result of these realities, the consequence of energy sorting is widening gaps among 

communities in energy portfolios and fiscal stability. 

Placing CCAs under the jurisdiction of the CPUC also means that, unlike POUs, CCAs 

are constrained by the goals and practices of state regulatory laws and policies.  The CPUC has a 

longstanding relationship with IOUs and its rules are designed to minimize a utility’s financial 

risks.  The foundation of this policy is the regulatory bargain between the state and an IOU:  the 

CPUC adopts policies that essentially guarantee the long-term financial viability of IOUs in 

return for IOUs agreeing to be the supplier of last resort in its service territory, including for 

customers of the CCA.  CPUC rules are designed to protect the investments of IOUs, not their 

upstart competitors.  While IOUs are guaranteed that their costs will be recovered, CCAs have 

no such regulatory safety net but are burdened with costs incurred by the IOU, such as legacy 
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costs from the energy crisis or liability for wildfire damage.  Thus, even if a CCA is nimble 

enough to enjoy a permanent cost advantage in procuring electricity, the CPUC would not be 

willing to allow competition from CCAs to cause an IOU to suffer significant losses. 

A CCA is likely to be further disadvantaged because it has less experience and relevant 

technical expertise than its IOU competitor in arranging for adequate power supplies.  CCAs face 

the same statewide technical requirements that IOUs must follow (e.g., long term procurement 

contracts, reliance on instate generation, resource adequacy goals).  These complex matters 

outstrip the technical capacities of small local governments, which causes all but the largest 

CCAs to contract out for technical services.  Relying on outside experts to address technical 

issues creates a potentially severe agency problem because a CCA’s top executives are elected 

politicians who typically have little or no relevant experience. 

As a result of structural features baked into the design of the market for retail electricity, 

CCA cost competitiveness can be undercut in two ways:  vertical leveraging by the IOU, and 

regulated rates for IOU services that transfer revenues from CCAs to an IOU if the financial 

viability of the latter is not secure. 

The first problem arises from the dependence of a CCA on an IOU for essential services.  

A core tenet of successful restructuring in competitive power markets is the “vertical separation 

of potentially competitive segments…from segments that will continue to be regulated” (Joskow 

2008).  This is clearly violated here.  A CCA depends on an IOU for transmission, distribution, 

reliability, and billing.  Thus, the IOU potentially can engage in vertical foreclosure of its CCAs. 

The second problem arises from CPUC price policies.  The CPUC requires that CCA 

customers reimburse the IOU for unrecovered IOU legacy costs (via the Power Charge 

Indifference Adjustment, or PCIA), the IOU’s liability for disasters for which the IOU has been 
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found to be responsible, and the costs of providing adequate resiliency as the provider of last 

resort.  Because a CCA’s customers can return to the IOU at any time, the CCA must remain 

price competitive with the IOU despite these costs or risk financially destabilizing defections. 

As a result of these factors, CCAs in wealthier communities that favor stronger 

environmental policies are more able to retain customers.  Communities that formed CCAs 

primarily to achieve cost savings will experience greater financial vulnerability as the price 

advantage of CCAs erodes. 

 

II. C.  CCA Costs and Prices 

One measure of the performance of CCAs is their prices in comparison with the prices of 

IOUs.  For three reasons, one would not expect CCAs to have much effect on electricity prices.  

First, the retail markets in which CCAs operate are duopolies, which do not normally exhibit 

vigorous price competition.  Second, a CCA has the advantage of being the default supplier of 

electricity within its jurisdiction.  Switching to the competing IOU is costly in the sense that it 

requires time and effort.  As a result, a CCA need not undercut or even match the price of an 

IOU to retain most of its customers.  Third, as discussed above, an IOU is the monopoly supplier 

of essential inputs to the CCA and so, if the CPUC approves, can extract the CCAs cost 

advantage through its prices for these inputs.  For these reasons a CCA is not likely to pass 

through a cost saving in procuring electricity. 

CCAs likely had a cost advantage over IOUs when CCAs first entered the market. 

Technological advances caused the cost of renewable generation to fall substantially since the 

energy crisis of 2000-2001, and especially after 2010.  During and immediately after the energy 

crisis, IOUs signed expensive long-term contracts for renewable energy that reflected the much 
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higher cost of renewables in the first few years of the 21st century.  When CCAs entered starting 

in 2010, they were able to sign contracts to procure renewable electricity at much lower prices.  

Lower wholesale electricity costs allowed CCAs to set retail prices slightly below IOU prices;  

however, this advantage was inherently temporary.  As old IOU contracts expired and were 

replaced by contracts of recent vintage, CCAs lost this cost advantage. 

The CPUC also has imposed stricter long-term contracting requirements on both IOUs 

and CCAs, cutting into the cost advantage that CCAs had enjoyed from having greater flexibility 

to make short-term purchases.  In addition, the PCIA surcharge on electricity sold by CCAs and 

DAPs rose significantly in the years of rapid CCA growth.  Thus, even if a CCA’s energy charge 

was below the IOU’s, its total charges often were greater. 

As a result of these factors, by 2022 CCAs generally did not have lower prices than 

IOUs.  Table 1 shows the price differences in recent years for basic residential rates between a 

CCA and its competing IOU.13  (The number of years covered differs among CCAs due to 

differences in formation dates and, in some cases, data availability.)  The table reveals a shift in 

relative prices in favor of IOUs.  In 2022, the prices charged by the vast majority of CCAs 

differed from prices for the corresponding IOU by one percent or less.  Table 2 compares IOU 

and CCA rate increases in 2021 and 2022, with the column on the far right showing the fraction 

of the IOU’s price increase that was not matched by the CCA.  In 15 of the 21 cases, the CCA’s 

rate change was at least 80 percent of the IOU’s rate change, indicating that CCAs tend to be 

price followers of the corresponding IOU. 

 

13 A CCA’s total rate is the sum of the rates for generation, transmission and distribution, PCIA, 

and franchise fee.  For IOUs, the total rate is the sum of the generation rate and the transmission 

& distribution rate.  (Before 2022, the IOU’s generation rate included PCIA and Franchise Fees 

bundled together.  Beginning in 2022, IOUs report unbundled generation and PCIA rates.) 
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The most plausible explanation for CCA price performance is rising costs, including 

regulated input prices.  An increasing number of CCAs are in precarious financial positions.  In 

addition to one bankruptcy and threats to abandon a few other CCAs, a recent CPUC staff report 

states that no new CCAs are expected to launch in 2023.  Between 2018 and 2022, seven CCAs 

either postponed their launches indefinitely or deregistered.  This is a stark contrast to the period 

from 2016 to 2019, when the number of CCAs increased rapidly. 

 

III.  Empirical Approach 

This section describes two regression models.  First is a model for predicting which 

communities form a CCA, which is used for gaining insight into the motives for creating CCAs 

and for detecting the presence of energy sorting in the formation of CCAs.  Second is a model 

for explaining the intensity of procurement of electricity from renewable sources among IOUs 

and CCAs. 

 

III. A.  The Decision to Form a CCA 

The first empirical task is to ascertain whether CCA formation is a function of the 

underlying demographic characteristics of its community.  Energy sorting implies that CCA 

formation will be affected by demographic, socioeconomic and ideological characteristics of a 

community.  such as wealthy communities with atypically high support for environmental 

regulation.  Data were collected for both incorporated cities and towns and unincorporated areas 

in a county.  A binomial logit model was used to ascertain the factors that led a community to 

form a CCA by the year 2020. 

For the binomial logit regression, the outcome variable (type of LSE operating in a 
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community in 2020) takes the value one if a CCA entered the community in any year between 

2010 and 2020.  Communities that, in 2020, were in the process of forming a CCA are recorded 

as served only by an IOU.  This group includes communities in which a CCA became 

operational after 2020 and other communities that abandoned the process of CCA formation in 

that period.  (A community in which a CCA was formed but then went bankrupt is coded as 

having a CCA.) 

If CCA formation rates are unaffected by demographic and political factors, none of the 

demographic variables should be a significant predictor of CCA formation.  If, however, the 

decision to form a CCA reflects sorting, then some demographic variables should have a 

significant association with CCA membership.  The model specification tests the importance of a 

variety of demographic features including community wealth, socio-political characteristics, 

local industry, presence of renewable resources, and geography.  If the specification omits 

important demographic variables, the results may fail to detect that an included factor affects 

formation, or falsely conclude that a factor influences CCA formation when in fact formation is 

influenced instead by its omitted correlate. 

Initially a CCA enrolls all customers within an area in which it offers service;  however, a 

CCA may offer service initially only in part of its jurisdiction, then gradually expand service as it 

negotiates agreements for more power.  Once a CCA offers service in a neighborhood, all the 

IOU’s customers automatically switch to CCA service unless they proactively opt to stay with 

the IOU.  Because data are not available for neighborhoods in the same local jurisdiction that 

were offered service at different times, all political, socioeconomic, and demographic variables 

are recorded at the community level.  This procedure results in two limitations to our findings.  

First, the model captures variation among communities within a multi-city LSE but cannot 
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measure the effects of variation in these variables within the same community.  Therefore, our 

results are likely to be biased against detecting the presence of sorting, some of which occurs at 

the neighborhood level.  Second, some customers opt-up to a CCA’s premium portfolio (a higher 

proportion of renewable energy) and some opt-out to return to IOU service.  We cannot identify 

the specific households that elect to opt-up or opt-out due to data privacy restrictions.  The 

problems arising because of this data limitation are limited by the fact that opt-outs and opt-ups 

tend to be a small percentage of customers. 

The logistic regression estimates the odds that a community will have formed a CCA by 

2020.  Extending our analysis to characterize CCA formation in the years since 2020 requires a 

different approach.  We assess changes in CCA formation during the pandemic by comparing the 

descriptive statistics for the last pre-pandemic set of CCA launches with the characteristics of 

communities that formed CCAs in 2021 or 2022, as well as those that indefinitely postponed or 

deregistered their CCAs. 

 

III. B.  Socioeconomic Determinants of CCA Clean Electricity Procurement 

Perhaps the paramount issue in the policy debate over the value of CCAs pertains to 

whether clean energy procurement varies systematically between CCAs and IOUs.  Also 

important for determining the likely future impact of the formation of additional CCAs is 

whether the intensity of clean energy varies among established CCAs.  Proponents of CCAs 

claim that they increase consumption of clean energy by their customers.  But among CCAs, the 

percentage of clean energy in procurement portfolios varies widely.  If existing CCAs exhibit 

sorting, the level of clean energy procurement by a CCA that has not yet been formed may be 

predictable based on the community’s demographic characteristics.  To test for whether this 
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might be possible, we regress the composition of a CCA’s energy portfolio composition on the 

characteristics of the community in which the CCA is located, in similar fashion to the 

regressions on CCA formation. 

Existing studies of CCAs from UCLA’s Luskin Center (see DeShazo, Gattaciecca and 

Trumbull, 2018; Trumbull, Gattaciecca, and DeShazo, 2020) examined renewable procurement 

by CCAs and IOUs, with a focus on CCA contributions to procurement above minimum state 

standards for procurement of electricity from renewable sources (RPS).  The 2020 report 

acknowledges that there are income and partisanship differences with respect to renewable and 

other clean energy sources in CCA portfolios but characterize the bivariate relationships as “not 

strongly correlated” (p. 14).  They conclude that “the size and median income of a community 

are not predictors of success,” suggesting that the CCA model “can be successful in a variety of 

communities with differing sizes and incomes.”  The 2020 study also reported single variable 

regressions showing that income and, separately, political party registration, did not significantly 

impact the CCA’s default renewable or carbon-free energy share. 

We examine these conclusions first in a multi-variate model using data from 2020 and 

then in disaggregated comparisons more recently.  Both reveal a more complex picture of CCAs.  

CCAs exhibit considerable heterogeneity with respect to renewable procurement, median 

income, party and scale. 

To ascertain whether prior findings were affected by specification error (omitted 

variables and incorrect functional form), we performed multivariate linear and piecewise linear 

regressions estimating the composition of a CCA’s electricity portfolio as determined by several 

demographic and socioeconomic variables.  In this regression procurement information for 2020 

is measured in two ways. “Renewable” means Category 1 generators (RPS eligible) and 
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Category 2 (specified import) renewables.  These renewable fuel sources are biofuel, small 

hydro, geothermal, wind, and solar.  “Carbon Free” refers to the sum of electricity from 

renewable, nuclear, and large hydro facilities. 

Data on electricity procurement by type of generation facility are from the Power Source 

Disclosure filings by each CCA, from which are calculated weighted averages of the percent of 

electricity from sources that are renewable and the percent from carbon-free sources.  For 

example, MCE is a multi-jurisdiction entity composed of CCAs in several communities in 

Contra Costa, Marin, Napa, and Solano counties.  If MCE had a 30 percent renewable portfolio 

that supplies 90 percent of its sales and a 100 percent renewable portfolio that supplies the other 

10 percent, we assign each community in MCE a renewable energy percentage of 37 percent 

(0.9x.30 +0.1x1.0). 

Some cities within a JPA CCA select a higher renewable portfolio as their default.  When 

this information is known, each city within a CCA is assigned the renewable and carbon-free 

energy percentages that correspond to its default portfolio.  For example, Calabasas has “Lean 

Power” as its default option, while Beverly Hills has “100 percent Green Power” as its default 

option.  Then Calabasas is assigned 40 percent renewable, while Beverly Hills is assigned 100 

percent.  This procedure does not account for the fact that some customers opt for a choice other 

than the default rate. 

 

IV.  Descriptive Statistics 

This section summarizes the data described above on the structure and performance of 

the retail electricity industry in California. 
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IV. A.  LSE Scale 

Prior to the creation of CCAs, three large IOUs (PG&E, SCE, and SDG&E) served 

approximately 80 percent of California’s load.  Throughout the analysis, “IOU” generally refers 

to these three and not to the three much smaller IOUs (Bear Valley, Liberty Utilities, and 

Pacificorp).  As of 2020, CCAs served 183 communities containing 11.3 million customers.  The 

smallest is King City Community Power, a single city CCA of 13,800 people;  the largest is 

Clean Power Alliance of Southern California, spanning 32 communities over two counties and 

serving 2.7 million people.  Table 3 shows that CCAs vary substantially in size.  Figure 1 further 

illustrates the heterogeneity among CCAs in terms of annual revenue, annual sales, and number 

of customer accounts. 

Throughout the empirical analysis, we restrict our attention to IOUs and CCAs.  We are 

principally interested in characterizing which communities join CCAs and how community 

characteristics affect the performance of the CCA.  As specified in AB 117, CCAs may be 

formed within the existing service territory of an IOU but not a POU or Co-Op.  

 

IV.B.  Community Characteristics 

Data were compiled for 18 parameters describing socioeconomic, demographic, and other 

characteristics of each community.  Regression tables contain a subset of these variables, as 

covariates that did not improve the explanatory power of the regression were removed.  Table 4 

lists the variables that are used in the regressions. 

The top executive authority of a CCA rests in a city or town council or a county board of 

supervisors.  Because the unit of observation is one of these communities, data were collected for 

each city, town, and unincorporated community in each county (n = 539).  Communities that are 
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not served by an IOU were removed from the data set (n = 475).  Summary statistics for these 

communities are shown in Table 5. 

The variables that are used to test for ideological sorting are four measures of the political 

preferences of citizens:  two indicators of general political ideology (party identification and vote 

share for Donald Trump in 2020), and two indicators of relevant policy preferences as measured 

by votes on ballot propositions (one that would have disfavored public provision of electricity 

and another that would have suspended California’s cap-and-trade program for controlling GHG 

emissions).  The variables that test for socioeconomic sorting are median income and measures 

of educational attainment.  Variables that potentially affect the demand for electricity, besides 

income, are measures of the structure of the local economy (shares of agriculture and 

manufacturing) and local climate (winter and summer temperatures).  Indicators that the 

community might perceive a benefit from a CCA that purchased power locally are megawatts of 

power production from nearby photovoltaic and hydro installations.  We also add an indicator for 

communities that are not in either PG&E or SCE’s original service territory.  The politics of the 

other four IOUs (SDG&E and the three small utilities) are more likely to be dominated by a 

single city or county, whereas PG&E and SCE have service territories that include many large 

political jurisdictions. 

 

IV. C.  Procurement 

Data to analyze heterogeneity in procurement come from the California Energy 

Commission’s (CEC) Power Source Disclosure (PSD) program. This program is intended to 

provide consumers “accurate, reliable, and simple to understand information on the sources of 
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energy that are used to provide electric services.”14  PSD filings for CCAs, IOUs, and POUs 

were obtained via a data request to the CEC, for years 2011–2020.  Each document contains 

information on MWh procured from each generation source and total retail sales.  Data for 2021 

come from a summary of PSD filings published on the CEC website, which contains total retail 

sales and percentages procured from each generation source for all portfolios.15 

The analysis of procurement focuses on the years 2017–2020, reflecting the relatively 

recent entry of most CCAs.  As shown in Table 6, more than three-quarters of CCAs commenced 

operation after 2016.  The period 2017–2020 also aligns with the most recent RPS compliance 

period.  RPS methodology differs somewhat from PSD accounting, creating discrepancies 

between the values presented in this analysis (reflective of actual retail sales each year) versus 

those found in the CEC staff’s RPS reports (reflective of RPS credit accounting).  

Table 7a summarizes relevant procurement data from the PSD filings for the CCAs and 

IOUs in question.  The table shows the estimated fraction of total procurement attributable to 

each fuel category as defined by the CEC.  Table 7b groups these fuels among renewable, other 

carbon-free, and fossil, following CEC definitions.16  Unspecified power, also called system 

power, is the difference between an LSE’s retail sales and specified (contracted) power.  

Unspecified power is assumed to have the average characteristics of the California grid. 

 

 

14  California Senate Bill 1305 (Stats. 1997, ch. 796). See: http://www.leginfo.ca.gov/pub/97-

98/bill/sen/sb_1301-1350/sb_1305_bill_19971009_chaptered.html. 

15  California Energy Commission, 2021 Power Content Labels Sortable Table, accessed at: 

https://www.energy.ca.gov/media/7746. 

16 Renewable includes biomass and biowaste, geothermal, eligible (small) hydro, solar, and 

wind.  Carbon-free includes large hydro and nuclear power. 
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V.  Results 

This section presents the results of several econometric models that explore the factors 

that affect the formation of CCAs and their procurement of electricity from renewable sources. 

 

V. A.  Factors Affecting the Presence of a CCA in 2020 

The first regression is a binomial logit model that estimates the odds that a city, town or 

county formed a CCA by 2020, based on its socioeconomic, demographic, political and climate 

characteristics.  The regression takes the form:  

 

𝑖𝑠_𝐶𝐶𝐴𝑖 =  𝑋′𝛽 + 𝜖𝑖 

 

where the vector X consists of variables measuring the characteristics of the community as 

discussed above. 

This regression indicates that CCA formation is related to community characteristics in a 

manner that implies socioeconomic and political energy sorting.  Table 8 reports statistically 

significant regression coefficients for median income, political support for local power, and 

political support for state regulation of GHG emissions.  The results support the hypothesis that 

CCA membership reflects energy sorting based on income and politics. 

Possible structural breaks in the causal relationships may be detected using a piecewise 

linear specification.  We test for structural breaks by separating each variable into two segments 

at the optimal breakpoint, defining a dummy variable that takes value zero if below the 

breakpoint and the value of the existing data if above the breakpoint, and re-running our 

generalized linear model to obtain two coefficients per independent variable.  Thus, the reported 
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coefficient for the segment above the breakpoint is the difference in slopes for the two segments.  

For example, our coefficient for median income is 3.612 for communities with median income 

below the breakpoint of $108,000 and 3.612 - 4.750 = -1.138 for communities with median 

income above $108,000 (the median household income for our entire sample is $87,000). 

A simple ANOVA test confirms whether the addition of each dummy variable 

significantly improves explanatory power.  We find that the effects of income, political support 

for local power, and climate are all better described by piecewise linear relationships;  we report 

these improvements to model fit alongside the fully linear model.  (A more detailed explanation 

of our model selection process and robustness tests are included in the Appendix.) 

 Larger regression coefficients do not necessarily mean larger effects on the outcome.  We 

measure the effect of changing each variable in isolation within its range of variance in the 

sample to assess the relative importance of each covariate on propensity for CCA formation.  We 

begin by creating a hypothetical community with average characteristics for all covariates and 

determine the model’s prediction of the probability of CCA formation.  We then perturb a 

covariate by one standard deviation, holding all other variables constant, and measure the 

difference in predicted probability of CCA formation.  This exercise, summarized in Table 9, 

shows that one standard deviation changes in income, political support for local power and for 

state regulation of GHG emissions, and August temperature (hot summer) have large effects on 

the probability that a CCA had been formed by 2020.  (The effect of January temperature is 

smaller.)  For example, an otherwise-average community with income one standard deviation 

below the sample mean (from $87,000 to $44,000) has an estimated probability of CCA 

formation that is 27.5 percent lower (from 39.7 percent to 12.2 percent). 

 Examining instances in which an existing CCA has a low predicted formation probability 
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and in which a community without a CCA has a high predicted formation probability provides 

some insight into which communities may seek to form CCAs in the future and which may be 

candidates to discontinue an existing CCA.  Table 10a lists all communities with a modeled 

propensity for CCA formation above 60 percent that did not belong to a CCA in 2020.  Most of 

these places did indeed become CCA communities in 2021 and 2022.  Further, the model results 

imply that the majority of communities with high propensity for CCA formation have already 

done so, leaving few likely candidates for further CCA expansion.  Table 10b lists all 

communities with a modeled propensity for CCA formation below 40 percent that did belong to 

a CCA in 2020.  Three communities with CCAs that deregistered in 2021 appear on this list.  

Most single-city CCAs, which plausibly lack sufficient scale for efficient operations, also appear. 

 

V. B.  Examining Post-2020 Trends 

The onset of the Covid-19 pandemic appears to have affected CCA formation since 2020.  

We compile information about all California communities that changed their CCA status (joining 

or abandoning a CCA) in 2021 and 2022 to assess changes in the propensity to form a CCA 

during the pandemic era.  Table 11 summarizes these findings.  We first display average 

demographic characteristics for the last cohort of pre-pandemic CCA launches (communities that 

began operation in 2018, 2019, and 2020).  We also show average demographic characteristics 

for the cohort of communities that intended to begin operating a CCA in 2021 or 2022.  This 

category is comprised of three groups:  communities that successfully launched a single-

jurisdiction CCA, communities that joined existing JPA CCAs, and communities that either 

indefinitely postponed launch plans or deregistered their CCA to return all customers to IOU 

service.  The “Postponed/Deregistered” category contains five indefinite postponements (four 
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single cities and one multi-community) and two deregistered CCAs (the city of Baldwin Park 

and Western Community Energy, which served six communities in Riverside County). 

The overall characteristics of the communities that intended to be part of operational 

CCAs in 2021–2022 do not appear much different from CCAs that launched in 2018–2020.  

However, the group of communities that postponed or deregistered their CCAs as of 2022 are 

markedly less wealthy and smaller than the groups that launched during 2018–2020 or that 

joined during 2021–2022.  New CCAs in 2021–2022 were associated with large communities 

such as the city of Santa Barbara.  Expansion of existing CCAs in this time period included many 

smaller communities.  This suggests that smaller communities looking to form a CCA find that 

joining an existing JPA is more attractive than attempting to launch a single-jurisdiction CCA. 

 

V. C.  Procurement of Renewable Electricity 

The last set of regressions examines the relationship between the average percentage of 

renewable energy in each LSE’s portfolio and the characteristics of the community.  The LSEs 

that are included in the first regression are the six IOUs plus the CCAs.  The second regression 

includes data only for CCAs. 

In both cases, the regression takes the form:  

 

𝑝𝑐𝑡_𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑖 =  𝑋′𝛽 +  𝜖𝑖  

 

where each i is an LSE and the vector X contains variables measuring community characteristics 

and size of the LSE.  The CCA only model takes the same form. 
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Having shown that the probability of CCA formation is affected by community 

characteristics, we now examine whether this leads to sorting in renewable energy procurement.  

The results for CCAs and IOUs combined are shown in Table 12 while the results for CCAs only 

are shown in Table 14.  As with the logit results for CCA formation, inclusion of piecewise 

linear terms improved model fit.  The combined results in Table 12 do not include income but do 

include a variety of other socioeconomic and political indicators, including variables around 

educational attainment.  The CCA only results in Table 14 include a strong income effect as well 

as significant coefficients for other socioeconomic indicators. 

In both the combined and CCA-only regressions, the size of the LSE is important.  In the 

combined analysis the coefficient is positive until the breakpoint then becomes slightly negative, 

reflecting the fact that, compared to CCAs, IOUs are much larger and procured a lower share of 

electricity from renewable sources.  Table 13 shows that among the significant variables, LSE 

size is the most influential in predicting renewable energy share.  In the CCA-only regression, 

the breakpoint to segment this variable occurs around the 10th percentile, so although the 

coefficient on size is negative for the smallest 10 percent (about 18 observations), it is otherwise 

positive.  This indicates that larger CCAs (usually agglomerations of multiple communities) 

procure a larger fraction of their power from renewable sources.  Table 15 confirms that within 

CCAs, LSE size is one of the most important variables for predicting the percentage of 

renewable energy use in a community. 

But do communities that consume more clean energy reflect the communities who most 

desire it?  One argument for CCAs is that they enable communities that want to leap ahead of 

state standards to realize greater renewable procurement.  If support for Prop 23 (the ballot 

measure about suspending AB32) is a good indicator of a preference for clean energy, then a 
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lower “yes” vote should correspond to higher levels of renewables.  Table 13 shows that Prop 23 

is not a significant variable for the combined regression.  Table 15 shows that the coefficient for 

Prop 23 is significant in the CCA-only regression.  However, among the set of significant 

variables it has the smallest quantitative effect (whether in the positive or negative direction) on 

the predicted percentage of renewable energy. 

The regression analysis shows that CCA formation leads to sorting by income.  The 

regressions reported in this section indicate that the percentage of renewable energy in a CCA’s 

portfolio in 2020 also is affected by income and the size of the CCA.  We now examine trends in 

procurement over time among various retail suppliers in California to assess the implications of 

energy sorting for overall progress towards decarbonized energy procurement. 

Although total CCA renewable procurement showed large year-on-year gains during the 

period 2017–2020, the trajectories of individual CCAs vary widely.  Table 16 groups CCAs into 

three categories that reveal the heterogeneity in CCA renewable procurement.  The first group 

exhibits consistent, sustained voluntary renewable procurement;  the second group struggles to 

procure stable, sustained amounts of clean energy, resulting in volatile portfolios;  the last group 

exhibits declining renewable procurement.  For comparison we also note the trajectories of select 

IOUs and POUs as well as aggregated procurement by DAPs. 

As noted above, customers leaving IOUs for CCAs left IOUs with excess renewable 

procurement.  In subsequent years, IOUs decreased renewable procurement, which also reduced 

their percentage of retail sales supplied by renewable resources.  Table 17 shows total CCA and 

total IOU renewable procurement.  Although CCAs consistently increased provision of 

renewable energy during 2017–2020, these increases were more than offset by the fall in 

renewable procurement by IOUs. 
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In addition to the difference between IOUs and CCAs in overall renewable procurement, 

CCAs also differ substantially in the share of renewables in their electricity supply.   CCAs can 

be separated into two equal groups according to median income (here labeled as “rich” and 

“poor.”  Likewise, CCAs can be divided into two equal groups according to MWh of electricity 

sales in 2020, here labeled as “large” and “small.”  Differences between these groups, and 

between each and other types of LSEs, for the period 2017–2021 are shown in Table 18 and 

Table 19.  We extend the analysis to 2021 using publicly available summaries of the Power 

Source Disclosure data.  Both stratifications show a substantial difference between the two 

groups in renewable procurement. 

Wealthier CCAs have indeed achieved high voluntary renewable procurement, although 

their renewable share has declined substantially since 2017.  Meanwhile, in 2021 less wealthy 

CCAs procured a lower fraction of renewable electricity than the average of the three big IOUs, 

and this group’s share of renewables in procurement is steadily declining. 

Similar results hold for large versus small CCAs.  The renewables share has gradually 

declined for large CCAs, but the fall has been precipitous for small CCAs.  Moreover, in 2021 

small CCAs had a lower renewable share than any other LSE type except for DAPs. 

These data have troubling implications regarding the future of CCAs.  IOUs have made 

gains in renewable procurement, while some CCAs have stagnated or even regressed.  Moreover, 

the gap between large/wealthy and smaller/poorer CCAs is growing, and the latter are losing 

ground to the IOUs as suppliers of electricity from renewable sources.  As a result, many CCA 

customers receive less green electricity than the IOU that serves their community.  If these CCAs 

provide neither greener power nor lower prices, the rationale for their existence is unclear. 
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VI.  Discussion 

Initially CCAs enabled some communities to attain levels of voluntary renewable 

procurement that exceeds state standards;  however, excess voluntary renewable procurement is 

realized and sustained only by wealthier and/or larger CCAs, and their performance advantage is 

shrinking.  Less wealthy and smaller CCAs have lower shares of renewable energy procurement 

than IOUs.  Evidently, CCAs have created greater dispersion but not substantially greater overall 

progress.  Simply focusing on the successes of some CCAs—or even apparent overall gains in 

statewide total procurement—ignores the evidence of stagnation or unevenness among CCAs. 

Energy sorting also implies stratification in the performances and broader abilities of 

California’s electricity retailers.  Wealthier and larger CCAs have greater capacity to take on 

matters requiring technical expertise, such as the mandates to procure long-term contracts, as 

well as greater reserves to weather adverse economic conditions.  While such CCA communities 

can sustain progress, stratification also created a class of communities tasked with electricity 

retailing duties that may outstrip their financial and technical capacity.   The seven CCAs who 

indefinitely postponed launch or deregistered are all either single-jurisdiction CCAs or are in less 

wealthy areas.  Thus, CCAs not only allowed some communities to surge ahead towards 100 

percent renewable electricity, they also potentially exposed other communities to financial 

vulnerability as they invested time and effort in unsustainable ventures. 

The ability of some communities to surge forward must be contrasted with the challenges 

of fractured governance of decarbonization.  Wealthy first movers benefitted from favorable 

conditions for inexpensive renewable contracts and were able to sort themselves into CCAs; 

now, the challenges to starting and maintaining a viable CCA are greater.  CCAs face greater 

difficulty in achieving cost savings or in offering a path to acquiring greener electricity.  Some 
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customers are receiving less electricity from renewable sources under CCA service than they 

would have received from their IOU. 

The remaining value of CCAs is in the other local decarbonization programs they offer, 

which vary widely depending on city capacity.  Wealthy and better-organized communities tend 

to dominate the policy agenda and win a larger share of funds.  Energy sorting by income, 

therefore, implies stratification in access, funding, and capacity to further decarbonize.  CCAs 

have indeed allowed some communities to progress faster—but these are the wealthy ones. 

The first decade of operations for CCAs reveals a system in flux.  The number of electric 

service providers expanded rapidly, as did renewable energy procurement.  What might an 

eventual equilibrium between CCAs, incumbent providers, and the regulator look like?  The 

future remains deeply uncertain.  In the past few years, California’s energy system has seen 

significant shocks ranging from summer reliability challenges to disastrous wildfires to bill debt 

from the Covid-19 pandemic. 

Notwithstanding these disruptions, one plausible equilibrium is becoming apparent:  a 

future in which CCAs agglomerate to capture economies of scale and to achieve financial 

stability, leaving fewer but larger independent CCA JPAs that approach IOUs in scale.  A 

plausible indicator of the future is the creation of a “super JPA” by the Bay Area CCAs to 

procure energy storage.  Larger CCAs have been more successful in achieving and sustaining 

high levels of renewable energy while remaining cost-competitive with IOUs, although even the 

larger CCAs have regressed on renewable procurement.  Smaller CCAs that are not part of large 

JPAs have been more likely to experience financial instability.  The recent performance of CCAs 

indicates that achieving greater scale is likely to improve performance, but whether scale alone 

can overcome the growing challenges faced by CCAs remains uncertain.  



 34 

References 

DeShazo, JR, Julien Gattaciecca, and Trumbull, Kelly. “The Growth in Community Choice 

Aggregation: Impacts to California’s Grid.” Next 10, July 2018. 

Borenstein, Severin, James B. Bushnell, and Frank A. Wolak. “Measuring Market Inefficiencies 

in California’s Restructured Wholesale Electricity Market.” American Economic Review 

92.5 (December 2002): pp. 1376-1405. 

Gunther, Stephen J., and David Bernell. “Challenging the System: The Role of Community 

Choice Aggregation in California’s Transition to a Renewable Energy Future.” The 

Electricity Journal 32, no. 10 (December 2019): 106679. 

https://doi.org/10.1016/j.tej.2019.106679. 

Hess, David J. “Coalitions, Framing, and the Politics of Energy Transitions: Local Democracy 

and Community Choice in California.” Energy Research & Social Science 50 (April 

2019): 38–50. https://doi.org/10.1016/j.erss.2018.11.013. 

Joskow, Paul L. “California’s Electricity Crisis.” NBER Working Paper, 2001. 

https://doi.org/10.3386/w8442. 

Joskow, Paul L. “Lessons Learned From Electricity Market Liberalization.” The Energy Journal 

29 (2008): 9–42. 

Miller, Gary J. Cities by Contract: The Politics of Municipal Incorporation. Cambridge, Mass: 

MIT Press, 1981. 

Payson, Julia A. “Cities in the Statehouse: How Local Governments Use Lobbyists to Secure 

State Funding.” The Journal of Politics 82, no. 2 (April 2020): 403–17. 

https://doi.org/10.1086/706767. 

Rothstein, Richard. The Color of Law: A Forgotten History of How Our Government Segregated 



 35 

America. First edition. New York, London:  Liveright Publishing Corporation, 2017. 

Trumbull, Kelly, JR DeShazo, Julien Gattaciecca, Colleen Callahan, and Michelle Einstein. “The 

Rapid Growth of Community Choice Energy and Its Acceleration of Renewable Energy: 

A California Case Study.”  UCLA Luskin Center for Innovation, November 6, 2019. 

Trumbull, Kelly, Julien Gattaciecca, and J R DeShazo. “The Role of Community Choice 

Aggregators in Advancing Clean Energy Transitions.” UCLA Luskin Center for 

Innovation, October 2020. 

Wolak, Frank A.  “Diagnosing the California Electricity Crisis.” Energy Journal 16.7  

(Aug./Sept. 2003):  pp. 11-37.  

https://www.sciencedirect.com/science/article/pii/S104061900300099X. 

  



 36 

Table 1: Selected CCA Residential Electricity Rate Comparisons 

 

CCA Name IOU Year 
Pt,IOU 

($/kWh) 

Pt,IOU-

Pt,CCA 

($/kWh) 

Source 

CPSF 

(CleanPowerSF) 
PG&E 2016 - 0.00024 

CPSF rates effective May 1, 2016, taken from tariff 

book provided by CCA through PRA request. 

  2017 0.23992 0.00543 
Rates from archived Joint Rate Comparison, effective 

July 1, 2017. 

  2020 0.26981 -0.00079 

Rates from archived Joint Rate Comparison. PG&E 

rates effective as of May 1, 2020. CPSF rates effective 

as of May 15, 2020 

  2021 0.28518 -0.00253 

Rates from archived Joint Rate Comparison. PG&E 

rates effective as of March 1, 2021. CPSF rates effective 

as of January 15, 2021 

  2022 0.34262 0 
Rates from archived Joint Rate Comparison, effective 

March 2022 

      

SCP 

(Sonoma Clean Power) 
PG&E 2017 0.24138 0.00213 

Rates from archived Joint Rate Comparison, effective 

March 1, 2017. 

  2018 0.25055 0.00431 
Rates from archived Joint Rate Comparison, July 1, 

2018 

  2020 0.27444 -0.01249 
Rates from archived Joint Rate Comparison, January 1, 

2021 

  2021 0.28461 -0.01295 
Rates from archived Joint Rate Comparison, April 1, 

2021 

  2022 0.34748 0.00073 
Rates from archived Joint Rate Comparison, effective 

July 1, 2022 

      

RCEA 

(Redwood Coast 

Energy Authority) 

PG&E 2017 - 0.00266 

Rates effective Jan 23, 2017, taken from tariff book 

provided on CCA website (link) 

  2018 0.25786 0.00323 
Rates from archived Joint Rate Comparison, March 15, 

2018 

  2021 0.29456 0.00057 
Rates from archived Joint Rate Comparison, June 21, 

2021 

  2022 0.35005 0.00076 
Rates from archived Joint Rate Comparison, effective 

July 1, 2022 

      

MCE 

(Marin Clean Energy) 
PG&E 2017 0.23887 0.00061 

Rates from archived Joint Rate Comparison, effective 

June 1, 2017. 

  2018 0.24928 0.00579 
Rates from archived Joint Rate Comparison, March 1, 

2018 

  2021 0.27904 -0.0209 
Rates from archived Joint Rate Comparison, May 1, 

2021 

  2022 0.34599 0.02394 
Rates from archived Joint Rate Comparison, effective 

June 1, 2022 

      

https://redwoodenergy.org/wp-content/uploads/2019/07/RCEA_Res_rates_Jan2017_4.pdf
https://redwoodenergy.org/wp-content/uploads/2019/07/RCEA_Res_rates_Jan2017_4.pdf
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VCE 

(Valley Clean Energy) 
PG&E 2018 0.23997 0.00269 

Rates from archived Joint Rate Comparison, June 1, 

2018 

  2021 0.28368 0 
Rates from archived Joint Rate Comparison, June 21, 

2021 

  2022 0.33991 0 
Rates from archived Joint Rate Comparison, effective 

June 1, 2022 

      

SVCE 

(Silicon Valley Clean 

Energy) 

PG&E 2018 0.24554 0.00647 

Rates from archived Joint Rate Comparison, March 1, 

2018 

  2021 0.28551 0.00114 
Rates from archived Joint Rate Comparison, March 1, 

2021 

  2022 0.34405 0.00152 
Rates from archived Joint Rate Comparison, effective 

June 1, 2022 

      

SJCE 

(San Jose Clean 

Energy) 

PG&E 2018 0.24352 0.00108 

Rates from archived Joint Rate Comparison, September 

2018 

  2019 - 0.00112 
Rates effective May 1, 2019, from tariff book provided 

on CCA website (link)  

  2020 - 0.00118 
Rates effective May 27, 2020, from tariff book provided 

on CCA website (link)  

  2021 0.28250 0.00029 
Rates from archived Joint Rate Comparison, March 1, 

2021 

  2022 0.34020 0.00074 
Rates from archived Joint Rate Comparison, effective 

July 1, 2022 

      

Pioneer Community 

Energy 
PG&E 2021 0.28812 -0.01109 

Rates from archived Joint Rate Comparison, June 21, 

2021 

  2022 0.34450 0.01566 
Rates from archived Joint Rate Comparison, effective 

June 1, 2022 

      

PCE-San Mateo 

County 

(Peninsula Clean 

Energy) 

PG&E 2018 0.24673 0.00539 

Rates from archived Joint Rate Comparison, March 15, 

2018 

  2021 0.27685 0.00571 
Rates from archived Joint Rate Comparison, March 

2021 

  2022 0.34473 0.00759 
Rates from archived Joint Rate Comparison, PCE rates 

effective July 2022, PG&E rates effective June 2022 

      

EBCE 

(East Bay Clean 

Energy) 

PG&E 2018 0.24513 0.00162 

Rates from archived Joint Rate Comparison. EBCE 

rates are current as of April 18, 2018. PG&E rates are 

current as of March 1, 2018 

  2020 0.26853 -0.00079 

Rates from archived Joint Rate Comparison. EBCE 

Rates are current as of July 2020 PG&E Rates are 

current as of May 2020 

https://files.constantcontact.com/7a210436601/b0993abd-84c3-42e1-8d71-7346bf22adcb.pdf
https://files.constantcontact.com/7a210436601/b0993abd-84c3-42e1-8d71-7346bf22adcb.pdf
https://sanjosecleanenergy.org/wp-content/uploads/2020/05/052720-SJCE-Rates.pdf
https://sanjosecleanenergy.org/wp-content/uploads/2020/05/052720-SJCE-Rates.pdf
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  2021 0.28164 0.00114 
Rates from archived Joint Rate Comparison, March 

2021 

  2022 0.34132 0.00455 
Rates from archived Joint Rate Comparison, effective 

July 2022 

      

3CE 

(Central Coast 

Community Energy) 

PG&E 2018 
0.24906 

 
0 

Rates from archived Joint Rate Comparison, March 

2018 

  2019 - 0 

Rates from archived MBCP rates, May 7, 2019 from 

tariff book provided on Wayback Machine archive of 

CCA website (link)  

  2020 - 0.00611 

Rates from archived MBCP rates, March 1, 2020 from 

tariff book provided on Wayback Machine archive of 

CCA website (link)  

  2021 
0.28545 

 
0.00029 

Rates from archived Joint Rate Comparison, March 1, 

2021 

  2022 
0.34557 

 
0.02716 

Rates from archived Joint Rate Comparison, June 1, 

2022 

      

KCCP 

(King City Community 

Power) 

PG&E 2020 0.27821 0.00134 

Rates from archived Joint Rate Comparison. Rates 

Current as of May 1, 2021 

  2021 0.27821 0.00134 
Rates from archived Joint Rate Comparison, May 1, 

2021 

  2022 0.33323 0 
Rates from archived Joint Rate Comparison, July 1, 

2022 

      

3CE-SCE SCE 2022 0.32566 0.00205 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2022. CCCE rates are 

current as of October 10, 2022. 

      

SJP 

(San Jacinto Power) 
SCE 2020 0.23526 0.00037 

Rates from archived Joint Rate Comparison. Rates are 

current as of October 1, 2020 

  2021 0.25142 -0.01347 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2021. SJP rates are current 

as of June 1, 2021. 

  2022 0.31273 0.00169 
SCE rates are current as of October 10, 2022. SJP rates 

are current as of March 1, 2022. 

      

      

RMEA 

(Rancho Mirage 

Energy Authority) 

SCE 2020 0.23131 0.00229 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2020. RMEA rates are 

current as of April 13, 2020 

  2021 0.24805 0.00096 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of Feb 1, 2021. RMEA rates are current as 

of April 1, 2020. 

  2022 0.30563 0.00057 
SCE rates are current as of October 1, 2022, RMEA 

rates are current as of March 1, 2022.  

https://web.archive.org/web/20210612181701/https:/3cenergy.org/wp-content/uploads/2019/05/MBCP-Res-Rate-Sheet-v6.1-FINAL-May-7-2019.pdf
https://web.archive.org/web/20210612181701/https:/3cenergy.org/wp-content/uploads/2019/05/MBCP-Res-Rate-Sheet-v6.1-FINAL-May-7-2019.pdf
https://web.archive.org/web/20210612181701/https:/3cenergy.org/wp-content/uploads/2019/05/MBCP-Res-Rate-Sheet-v6.1-FINAL-May-7-2019.pdf
https://web.archive.org/web/20211020132038/https:/3cenergy.org/wp-content/uploads/2020/03/MBCP-Residential-Rate-Sheet-v12.0.pdf
https://web.archive.org/web/20211020132038/https:/3cenergy.org/wp-content/uploads/2020/03/MBCP-Residential-Rate-Sheet-v12.0.pdf
https://web.archive.org/web/20211020132038/https:/3cenergy.org/wp-content/uploads/2020/03/MBCP-Residential-Rate-Sheet-v12.0.pdf
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PRIME 

(Pico Rivera 

Innovative Municipal 

Energy) 

SCE 2020 0.23063 0 

Rates from archived Joint Rate Comparison. Rates are 

current as of October 1, 2020 

  2021 0.25340 -0.0149 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2021. PRIME rates are 

current as of September 1, 2021. 

  2022 0.30532 0.00113 
SCE rates are current as of October 1, 2022. PRIME 

rates are current as of March 1, 2022.  

      

Pomona Choice 

Energy 
SCE 2020 

0.23063 

 
0 

Rates from archived Joint Rate Comparison, effective as 

of October 1, 2020. 

  2021 0.25587 0.00013 
Rates from archived Joint Rate Comparison. SCE rates 
are current as of June 1, 2021. POME rates are current 

as of April 1, 2020. 

  2022 0.30532 0.00338 
SCE rates are current as of October 1, 2022. POME 

rates are current as of March 1, 2022.  

      

LCE 

(Lancaster Clean 

Energy) 

SCE 2020 0.22901 0.00362 

Rates from archived Joint Rate Comparison. Rates 

current as of June 1, 2020 for SCE and April 13, 2020 

for LCE 

  2021 0.25317 -0.00869 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of June 1, 2021. LCE rates are current as 

of March 1, 2021. 

  2022 
0.31391 

 
-0.00632 

SCE rates are current as of October 1, 2022. LCE rates 

are current as of May 20, 2022.  

      

DCE 

(Desert Clean Energy) 
SCE 2020 

0.22185 

 
0.00375 

Rates from archived Joint Rate Comparison. Rates are 

current as of April 13, 2020  

  2021 0.25177 0.00096 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of June 1, 2021. DCE rates are current as 

of July 15, 2021 

  2022 0.31047 0.00116 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2022.  DCE rates are current 

as of October 1, 2022. 

      

CPA 

(Clean Power 

Alliance) 

SCE 2020 0.23063 0.00197 

Rates from archived Joint Rate Comparison. Rates are 

current as of October 1, 2020 

  2021 0.25340 0 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2021. CPA rates are current 

as of July 1, 2021. 

  2022 0.30532 0.00308 
SCE rates are current as of October 1, 2022. CPA rates 

are current as of October 1, 2022.  
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BPROUD 

(Baldwin Park 

Resident-Owned 

Utility District) 

SCE 2020 0.23063 0 

Rates from archived Joint Rate Comparison. Rates are 

current as of October 1, 2020 

  2021 0.25587 -0.01777 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2021. BPROUD rates are 

current as of September 1, 2021. 

      

AVCE 

(Apple Valley Choice 

Energy) 

SCE 2020 0.23719 0.00037 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2020. AVCE rates are 

current as of April 13, 2020. 

  2021 0.27971 -0.00709 

Rates from archived Joint Rate Comparison. SCE rates 

are current as of October 1, 2021. AVCE rates are 

current as of April 13, 2020. 

  2022 0.31391 0.00338 
SCE rates are current as of October 1, 2022. AVCE 

rates are current as of March 1, 2022 

      

SBCE (Santa Barbara 

Clean Energy) 
SCE 2022 0.32566 0 

SCE rates are current as of October 1, 2022. SBCE rates 

are current as of October 1, 2022.  

      

OCPA (Orange 

County Power 

Authority) 

SCE 2022 0.32566 0 

SCE rates are current as of October 1, 2022. OCPA 

rates are current as of October 1, 2022. 

      

EPIC (Energy for 

Palmdale’s 

Independent Choice) 

SCE 2022 0.31129 -0.01536 

SCE rates are current as of October 1, 2022. EPIC rates 

are current as of October 1, 2022. 

      

SEA 

(Solana Energy 

Alliance) 

SDG&E 2021 0.33714 -0.00288 

Rates from archived Joint Rate Comparison, March 1, 

2021 

      

CEA 

(Clean Energy 

Alliance) 

SDG&E 2021 0.33391 0.00322 

Rates from archived Joint Rate Comparison, June 1, 

2021 

  2022 0.38201 -0.00252 
CEA rates effective February 1, 2022. SDG&E rates 

effective June 1, 2022 

      

SDCP (San Diego 

Clean Power) 
SDG&E 2022 0.36298 -0.002750 

SDCP rates effective February 1, 2022. SDG&E rates 

effective June 1, 2022  

 

  



 41 

 
Sources: 

For most CCA-year pairs, electricity prices of IOUs and CCAs are taken from Joint Rate Comparison documents 

provided on IOU websites. Joint Rate Comparisons for 2017, 2018, 2020, and 2021 are from Wayback Machine 

archives of IOU websites. For several other CCA-year pairs, electricity prices were sourced from tariff books found 

online or provided through Public Records Act requests. For 2022, Joint Rate Comparisons were sourced from IOU 

websites. Joint Rate Comparison tables for the year 2019 were not available. 

Notes: 

1.  No. of Customers for a year calculated by taking the maximum number of customers reported in that year 

2.  From 2018-2020, 3CE was called Monterey Bay Community Power (MBCP). Tariffs for MBCP are used and 

reported as 3CE. 

3.  From 2021 onwards, 3CE includes SCE service territory. Separate 3CE-SCE prices are reported for 2022. 

4.  For 2022, PCE rates are calculated using the larger San Mateo County service territory, and the newer Los Banos 

prices are excluded. 

5.  For 2022, BPROUD prices are not available as the CCA deregistered in 2021. 

6.  For PG&E, the basic residential rate is E-1. For SCE, it is D. For SDG&E, it is DR. 

7.  When a CCA or IOU offered premium rates of higher renewable content, the lowest-tier rate with the minimum 

renewables content (the default rate) was used for comparison purposes 

8.  For certain years for CPSF, RCEA, SJCE, and 3CE, Joint Rate Comparisons were not available, but 

Pt,IOU(generation), Pt,CCA(generation), and Pt,IOU(PCIA+FF)  were reported by the CCA. For those years, the 

total Pt,IOU could not be estimated in a way consistent with the rest of the dataset. However, for those CCA-year 

pairs, Pt,IOU-Pt,CCA is still available. This difference is calculated with P_(T,IOU (generation))-[P_(T,CCA 

(generation) )+P_(T,CCA (PCIA+FF) )]. This difference is consistent with other differences calculated since the 

residual components of the rate, including transmission and distribution, are equal for IOU and CCA customers, and 

so are not relevant to the difference in their rates. 
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Table 2: Effect of IOU Rate Increases on CCA Rates 
 

CCA Name IOU 

Change in IOU Rate, 2021-

22 

P2022,IOU - P2021,IOU 

Change in IOU-CCA Rate 

Difference, 2021-22 

(P2022,IOU - P2022,CCA) - (P2021,IOU 

- P2021,CCA) 

Ratio of Change in IOU-CCA 

Rate Difference 

To Change in IOU Rate 

[(P2022,IOU - P2022,CCA) - 

(P2021,IOU - P2022,CCA)]/ 

[P2022,IOU - P2021,IOU] 

3CE 

PG&E 

0.060120 0.026870 0.446939 

CPSF 0.057440 0.002530 0.044046 

EBCE 0.059680 0.003410 0.057138 

KCCP 0.055020 -0.001340 -0.024355 

MCE 0.066950 0.043430 0.648693 

PCE-SM 0.067880 0.001990 0.029316 

PIO 0.056380 0.026750 0.474459 

RCEA 0.055490 0.000190 0.003424 

SCP 0.062870 0.013680 0.217592 

SJCE 0.057700 0.000450 0.007799 

SVCE 0.058540 0.000380 0.006491 

VCE 0.056230 0.000000 0.000000 

AVCE 

SCE 

0.034200 0.010470 0.306140 

CPA 0.051920 0.008330 0.160439 

DCE 0.058700 0.000200 0.003407 

LCE 0.060740 0.002500 0.041159 

POME 0.049450 0.003250 0.065723 

PRIME 0.051920 0.007660 0.147535 

RMEA 0.057580 -0.000390 -0.006773 

SJP 0.061310 0.007850 0.128038 

CEA SDG&E 0.048100 -0.005740 -0.119 
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Sources: websites of each LSE, CEC Power Source Disclosure program. 

Notes:  

1.  At the time of the data request to the CEC, the filings for King City Community Power, Bear Valley Electric 

Service, and Western Community Energy were confidential and unavailable to the authors. 

2.  A “Community” is a city, town, or unincorporated area of a county that has formed a CCA or joined a 

multijurisdictional CCA. 

3.  Baldwin Park and Pomona began serving load in October 2020.  
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Figure 1a: Spread of CCA annual revenue, billions of dollars 

 

Source: EIA Form 861 
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Figure 1b: Spread of CCA annual sales, millions of MWh 

 

Source: EIA Form 861 

 

Figure 1c: Spread of CCA customers, millions of accounts 

 

Source: EIA Form 861 
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Table 4:  Community Characteristics:  Names, Descriptions, Units of Measurement  

Variable Name Description Units 

med_income1 Median household income  $100,000’s 

pct_white1 Percentage identifying as non-Latino White % 

pct_asian1 Percentage identifying as Asian % 

pct_some_college1 Percentage with at least a high school diploma, 

some college but no bachelor’s 

% 

pct_bachelors1 Percentage with at least a bachelor’s) % 

pct_democrat2 Percentage registered with Democratic Party % 

population1 Population size Million people 

med_age1 Median age Decades 

pct_yes_prop_162 Voting Yes on Prop 16, a ballot measure where yes 

indicated opposition to local/public power 

% 

pct_yes_prop_232 Voting Yes on Prop 23, a ballot measure that 

would have suspended AB 32 

% 

pct_trump2 Vote for Donald Trump in the 2020 presidential 

election  

% 

pct_manufacturing1 Manufacturing share of employment % 

pct_agri1 Agricultural share of employment % 

hydro4 Hydro production within same county MW 

pv4 PV production within same city/county MW 

temp_jan3 Average temperature in January Tens of Degrees 

Fahrenheit  

temp_aug3 Average temperature in August Tens of Degrees 

Fahrenheit 

lse_size5 LSE size (Only used for procurement-related 

regressions) 

Billion MWh sales 

in 2020 

not_PGE_SCE Indicates if the community is outside PG&E or 

SCE’s original service territories 

Binary indicator 

 

Notes to Table 4. 

1 Data for income, race, education, age, population, and employment category come from ACS 5-

year tables, 2020 vintage. Census data was pulled with Place (i.e., city/town/CDP) as the 

granularity, so all CDPs in a given county were aggregated to yield a single value for the 

unincorporated county. 

2 Data for political party affiliation, presidential vote, vote on Prop 16, and vote on Prop 23 come 

from the CA Secretary of State’s database. These report a single value for the unincorporated 

counties so no additional mapping was needed. There were six entries missing for Prop 16 

(mostly unincorporated counties), so those entries were dropped from the dataset. 

3 Temperature data comes from NOAA Monthly Temperature Normals (1980–2010). Weather 
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stations were matched to cities where this mapping was straightforward (taking simple averages 

where multiple stations serviced the same city). Otherwise, for smaller cities/towns, the county 

average value was simply applied. 

4 Local hydro and local PV production come from the CEC arcGIS (https://cecgis-

caenergy.opendata.arcgis.com/) and CEC Energy Almanac (https://www.energy.ca.gov/data-

reports/energy-almanac/data-renewable-energy-markets-and-resources). For PV, all CEC-

registered solar plants were mapped to the city or unincorporated county where they are 

physically located. For hydro, all cities within a given county were assigned the value of total 

hydro production in that county. 

5 Finally, LSE size is based on the total MWh of retail sales for that LSE in 2020, which was 

calculated by summing up sales across all portfolios offered by each LSE as reported in the 2020 

Power Source Disclosure filings. This variable is only used for the regression analyses 

concerning renewable and carbon-free procurement. It is not included in the logit regression 

about CCA membership, since the size of a community’s LSE is clearly dependent on whether it 

formed a CCA or not.  

 

  



 48 

 

 

 

 

 

Table 6: Number of CCAs with PSD filings by year 

 

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Number 

of CCAs 
1 1 1 2 3 5 9 19 19 22 

Source: CEC Power Source Disclosure program 
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Table 7a: Average Percent of Overall Retail Sales by Fuel Type, 2017–2020 

Category CCA IOU 
 

2017 2018 2019 2020 2017 2018 2019 2020 

Biomass & 

biowaste 
4.3% 3.3% 3.1% 2.5% 1.8% 2.0% 1.6% 1.2% 

Geothermal 6.1% 5.6% 6.9% 6.3% 5.2% 5.4% 3.7% 3.8% 

Eligible hydro 4.9% 1.9% 3.1% 1.8% 1.7% 1.2% 1.3% 0.8% 

Solar 9.1% 11.0% 15.5% 21.2% 13.0% 14.8% 15.1% 15.9% 

Wind 27.0% 27.0% 21.1% 18.3% 9.7% 12.2% 10.9% 9.2% 

Coal 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Large hydro 35.2% 34.0% 30.5% 27.9% 11.3% 7.0% 13.1% 5.3% 

Natural Gas 1.2% 0.0% 0.2% 0.0% 22.9% 18.1% 12.0% 17.0% 

Nuclear 0.0% 0.0% 0.4% 2.4% 14.3% 15.9% 18.7% 18.6% 

Other 0.3% 2.7% 0.1% 0.2% 0.1% 0.1% 0.1% 0.2% 

Unspecified 

Power 

11.8% 14.4% 19.1% 19.5% 20.1% 23.4% 23.6% 27.9% 

Total 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 7b:  Electricity Sources Aggregated by Type  

Category CCA IOU 

 2017 2018 2019 2020 2017 2018 2019 2020 

Renewable 51.5% 48.9% 49.7% 50.0% 31.3% 35.6% 32.6% 30.9% 

Other carbon-

free 

35.2% 34.0% 31.0% 30.3% 25.6% 22.9% 31.8% 23.9% 

Carbon 1.4% 2.7% 0.3% 0.2% 23.0% 18.2% 12.1% 17.2% 

Unspecified 

Power 

11.8% 14.4% 19.1% 19.5% 20.1% 23.4% 23.6% 27.9% 

Total 100% 100% 100% 100% 100% 100% 100% 100% 

Source: CEC Power Source Disclosure program 

Note: Unspecified power is treated as a separate category from renewable energy and carbon-free energy, regardless 

of how much renewable/carbon-free energy contributed to system power throughout the year. 
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Table 9: Impact of Each Variable on Predicted Probability of CCA Formation 

 
Pr(is_CCA) Change in Probability 

All Average 39.7% 0.0% 

+1 SD, med_income 51.8% 12.1% 

+1 SD, pct_yes_prop_16 19.8% -19.9% 

+1 SD, pct_yes_prop_23 18.5% -21.2% 

+1 SD, temp_jan 35.4% -4.3% 

+1 SD, temp_aug 27.0% -12.6% 

-1 SD, med_income 12.2% -27.5% 

-1 SD, pct_yes_prop_16 63.7% 24.0% 

-1 SD, pct_yes_prop_23 65.6% 25.9% 

-1 SD, temp_jan 30.4% -9.3% 

-1 SD, temp_aug 66.1% 26.5% 
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Table 10a: Non-CCA Communities in 2020 with a High Propensity for CCA Formation 

 

Place_Name LSE_name Pr(is_CCA) Notes 

Del Rey Oaks PG&E 96.8% Subsequently joined 3CE 

Goleta SCE 95.0% Subsequently joined 3CE 

Santa Barbara SCE 94.6% Subsequently launched own CCA 

Pleasant Hill PG&E 92.3% Subsequently joined MCE 

Pismo Beach PG&E 90.4% Subsequently joined 3CE 

Newark PG&E 89.9% Subsequently joined EBCE 

Pleasanton PG&E 85.4% Subsequently joined EBCE 

Hercules PG&E 84.9% 
 

Orinda PG&E 84.8% 
 

Hermosa Beach SCE 82.8% Subsequently joined 3CE 

Unincorporated Santa 

Barbara County 

PG&E 72.3% Subsequently joined 3CE 

Carpinteria SCE 72.1% Subsequently joined 3CE 

Compton SCE 71.9% 
 

Inglewood SCE 69.9% 
 

Nevada City PG&E 68.1% 
 

Blythe SCE 65.8% 
 

Clayton PG&E 65.5% 
 

Unincorporated San Luis 

Obispo County 

PG&E 60.7%  
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Table 10b: CCA Member Communities in 2020 with a Low Propensity for CCA Formation 

Place_Name LSE_name Network 

IOU 

Pr(is_CCA) Notes 

Arcadia Clean Power Alliance of SoCal SCE 39.2% 
 

Rocklin Pioneer Community Energy PG&E 38.7% 
 

Temple City Clean Power Alliance of SoCal SCE 38.4% 
 

Unincorporated 

Placer County 

Pioneer Community Energy PG&E 34.9% 
 

Fortuna Redwood Coast Energy Authority PG&E 34.2% 
 

Alhambra Clean Power Alliance of SoCal SCE 34.0% 
 

Unincorporated Los 

Angeles County 

Clean Power Alliance of SoCal SCE 33.8% 
 

Rio Dell Redwood Coast Energy Authority PG&E 32.3% 
 

Pico Rivera Pico Rivera Innovative Municipal 

Energy 

SCE 32.3% Single-city CCA 

Rancho Mirage Rancho Mirage Energy Authority SCE 31.2% Single-city CCA 

Unincorporated 

Yolo County 

Valley Clean Energy Alliance PG&E 30.7% 
 

Hawthorne Clean Power Alliance of SoCal SCE 29.4% 
 

Rolling Hills Estates Clean Power Alliance of SoCal SCE 28.6% 
 

Baldwin Park Baldwin Park Resident Owned 

Utility District 

SCE 25.0% Deregistered in 2021 

Lincoln Pioneer Community Energy PG&E 24.6% 
 

Whittier Clean Power Alliance of SoCal SCE 23.6% 
 

Downey Clean Power Alliance of SoCal SCE 23.5% 
 

Unincorporated 

Solano County 

Marin Clean Energy PG&E 20.0% 
 

Norco Western Community Energy SCE 18.9% Deregistered in 2021 

Paramount Clean Power Alliance of SoCal SCE 18.8% 
 

San Jacinto San Jacinto Power SCE 18.1% Single-city CCA 

Palm Springs Desert Community Energy SCE 15.9% Single-city CCA 

Hawaiian Gardens Clean Power Alliance of SoCal SCE 14.0% 
 

Auburn Pioneer Community Energy PG&E 13.0% 
 

Hemet Western Community Energy SCE 12.0% Deregistered in 2021 

Apple Valley Apple Valley Choice Energy SCE 10.1% Single-city CCA 

Solana Beach Solana Energy Alliance SDG&E 8.7% 
 

Loomis Pioneer Community Energy PG&E 7.5% 
 

Colfax Pioneer Community Energy PG&E 5.8% 
 

Pomona Pomona Choice Energy SCE 4.7% Single-city CCA 

Lancaster Lancaster Choice Energy SCE 2.0% Single-city CCA 
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Table 11: Analysis of Pre- and Post-Pandemic CCA Formation 

 
Active LSEs, 

2018–2020 

Intended LSEs, 

2021–22 

New Launch, 

2021–2022 

Expansion, 

2021–2022 

Postponed/ 

Deregistered 

Num communities 83 51 16 21 14 

 
Mean SD Mean SD Mean SD Mean SD Mean SD 

med_income $93,395 $23,936 $86,486 $21,246 $88,651 $16,892 $93,481 $28,000 $69,692 $22,518 

pct_white 32.5% 21.6% 40.1% 18.0% 42.6% 15.1% 38.3% 19.7% 31.7% 25.0% 

pct_asian 19.6% 15.9% 14.8% 10.6% 16.4% 10.5% 14.7% 11.8% 8.3% 8.4% 

pct_some_college 45.5% 9.3% 48.7% 10.5% 45.1% 9.6% 52.9% 9.8% 58.7% 6.5% 

pct_bachelors 38.7% 16.1% 38.0% 16.0% 43.8% 13.5% 32.6% 15.6% 20.0% 10.4% 

pct_democrat 51.6% 9.7% 43.1% 7.6% 42.0% 6.7% 46.9% 6.8% 43.2% 10.8% 

population 375,329 401,266 494,649 584,471 708,181 629,113 82,577 38,919 71,587 26,104 

med_age 37.8 4.7 36.4 3.8 36.6 3.1 37.1 5.1 34.7 4.6 

pct_yes_prop_16 44.6% 10.7% 53.8% 12.2% 54.5% 5.9% 49.5% 5.9% 55.7% 31.8% 

pct_yes_prop_23 32.6% 8.7% 42.3% 9.8% 42.2% 7.2% 39.8% 6.4% 46.6% 22.8% 

pct_trump 25.5% 10.2% 34.5% 10.5% 35.2% 9.2% 28.8% 11.1% 37.8% 13.6% 

pct_manufacturing 10.2% 3.9% 9.6% 2.4% 9.9% 2.1% 9.2% 3.2% 9.1% 2.6% 

pct_agri 2.2% 5.5% 1.7% 4.3% 0.6% 0.5% 5.0% 8.8% 2.5% 3.3% 

hydro 672.0 921.8 191.6 499.0 129.4 417.8 30.9 127.4 629.1 801.6 

pv 8.3 16.5 31.8 95.6 42.2 116.1 16.7 46.8 5.4 8.6 

temp_jan 51.4 3.3 53.6 3.7 55.2 2.5 49.1 2.2 52.0 4.5 

temp_aug 70.5 4.6 73.5 4.4 72.8 2.5 70.3 4.5 79.8 4.8 
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 Table 13: Impact of Each Variable on Predicted Percentage Renewable, CCAs and IOUs 

 
pct_renewable Change in Predicted 

Percentage 

All Average 47.4% 0.0% 

+1 SD, pct_white 46.1% -1.3% 

+1 SD, pct_some_college 44.8% -2.6% 

+1 SD, pct_democrat 50.9% 3.5% 

+1 SD, med_age 49.4% 2.0% 

+1 SD, pct_manufacturing 46.4% -1.0% 

+1 SD, hydro 46.5% -0.9% 

+1 SD, temp_jan 48.9% 1.6% 

+1 SD, temp_aug 48.7% 1.3% 

+1 SD, lse_size 35.0% -12.4% 

-1 SD, pct_white 45.4% -2.0% 

-1 SD, pct_some_college 49.9% 2.6% 

-1 SD, pct_democrat 43.8% -3.5% 

-1 SD, med_age 43.1% -4.3% 

-1 SD, pct_manufacturing 48.3% 1.0% 

-1 SD, hydro NA NA 

-1 SD, temp_jan 45.8% -1.6% 

-1 SD, temp_aug 46.1% -1.3% 

-1 SD, lse_size 55.5% 8.1% 
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Table 15: Impact of Each Variable on Predicted Percentage Renewable, CCA Only 

 
pct_renewable Change in Predicted 

Percentage 

All Average 52.9% 0.0% 

+1 SD, med_income 59.9% 7.0% 

+1 SD, pct_white 62.2% 9.4% 

+1 SD, pct_asian 61.0% 8.2% 

+1 SD, pct_some_college 42.3% -10.5% 

+1 SD, pct_bachelors 32.2% -20.7% 

+1 SD, pct_democrat 64.1% 11.2% 

+1 SD, pct_yes_prop_23 55.0% 2.2% 

+1 SD, pct_manufacturing 49.6% -3.3% 

+1 SD, hydro 50.2% -2.7% 

+1 SD, temp_jan 46.9% -6.0% 

+1 SD, lse_size 72.1% 19.2% 

-1 SD, med_income 45.8% -7.0% 

-1 SD, pct_white 33.1% -19.8% 

-1 SD, pct_asian 44.7% -8.2% 

-1 SD, pct_some_college 63.4% 10.5% 

-1 SD, pct_bachelors 73.5% 20.7% 

-1 SD, pct_democrat 41.7% -11.2% 

-1 SD, pct_yes_prop_23 50.7% -2.2% 

-1 SD, pct_manufacturing 56.2% 3.3% 

-1 SD, hydro NA NA 

-1 SD, temp_jan 58.8% 6.0% 

-1 SD, lse_size 33.7% -19.2% 
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Table 16a: Percent Renewable, Constant or Increasing Levels 

LSE 2017 2018 2019 2020 

Central Coast Community 

Energy (3CE) 
N/A 31.0% 31.2% 31.5% 

Clean Power Alliance of 

Southern California 
N/A 53.2% 50.5% 60.2% 

CleanPowerSF 45.6% 50.8% 50.6% 56.6% 

Marin Clean Energy 62.4% 62.1% 61.5% 62.5% 

Peninsula Clean Energy 54.0% 54.3% 55.6% 55.2% 

Sonoma Clean Power 

Authority 

45.2% 49.0% 50.7% 49.6% 

LADWP 30% 32% 34% 37% 

SMUD 23% 25% 29% 37% 

 

Table 16b: Percent Renewable, Inconsistent Levels 

LSE 2017 2018 2019 2020 

East Bay Community Energy N/A 41.7% 62.5% 39.3% 

Pioneer Community Energy N/A 32.8% 29.6% 32.4% 

Redwood Coast Energy Authority 44.4% 47.0% 43.4% 38.7% 

San Jose Clean Energy N/A 42.4% 34.5% 47.1% 

Silicon Valley Clean Energy 48.8% 49.9% 48.4% 44.8% 

PG&E 31.3% 36.3% 28.7% 30.8% 

SCE 29.1% 33.6% 35.1% 30.9% 

Direct Access (Averaged) 31% 26% 30% 29% 
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Table 16c: Percent Renewable, Decreasing Levels 

 

2017 2018 2019 2020 

Apple Valley Choice Energy 38.0% 37.5% 28.4% 29.2% 

Lancaster Choice Energy 37.4% 37.1% 28.6% 30.5% 

Pico Rivera Innovative Municipal Energy 63.9% 58.8% 29.4% 32.1% 

Rancho Mirage Energy Authority N/A 36.2% 35.4% 32.2% 

San Jacinto Power N/A 40.9% 30.8% 31.2% 

Solana Energy Alliance N/A 48.0% 50.6% 35.6% 

Valley Clean Energy Alliance N/A 47.9% 45.4% 44.0% 

SDG&E 41.2% 42.9% 31.9% 31.6% 

Source: CEC Power Source Disclosure program 
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Table 17: Annual renewable resource procurement by LSE type (MWh) 

 

2017 2018 2019 2020 

Total CCA 6,247,745 12,092,281 21,285,299 23,241,477 

Total IOU 50,419,513 51,838,946 36,584,678 33,791,541 

Total POU 17,537,270 18,188,537 18,426,213 20,150,899 

Total DA 5,715,686 6,297,761 5,918,025 6,752,559 

Combined 79,920,213 88,422,454 82,214,215 83,936,477 
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Table 18: Renewable Procurement for Large  

versus Small (<2 million MWh per year) CCAs 

 

2017 2018 2019 2020 2021 

Small CCAs 40% 40% 35% 37% 31% 

Large CCAs 53% 50% 51% 51% 50% 

PG&E 31% 36% 29% 31% 49% 

SCE 29% 34% 35% 31% 31% 

SDG&E 41% 43% 32% 32% 45% 

IOU average 31% 36% 33% 31% 39% 

POU average 28% 29% 31% 34% 34% 

DA average 31% 26% 30% 29% 23% 
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Table 19: Trends in Renewable Procurement for High  

versus Low Income (<$82k median income) CCAs 

 
2017 2018 2019 2020 2021 

Poor CCAs 44% 41% 39% 39% 38% 

Rich CCAs 55% 52% 52% 53% 50% 

PG&E 31% 36% 29% 31% 49% 

SCE 29% 34% 35% 31% 31% 

SDG&E 41% 43% 32% 32% 45% 

IOU average 31% 36% 33% 31% 39% 

POU average 28% 29% 31% 34% 34% 

DA average 31% 26% 30% 29% 23% 
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Appendix A - Energy Sorting

Initially, a straightforward binomial logit specification was estimated. Because the functional form of the underlying
equation cannot be derived from theory, a different functional form plausibly may be a better representation of the
underlying relationship. To test whether the functional form is non-linear, piecewise linear specifications also were
estimated. Appendix Tables A1—A17 display the results of regressions in which one of the continuous covariates is
divided into two segments while leaving all other variables unchanged.

Segmenting the data adds an additional variable, a tradeoff that is worthwhile if the resulting piecewise specifi-
cation adds explanatory power. This was determined by using ANOVA. The variables found to improve explanatory
power when segmented were added on to the original binomial logit. Then, variable selection was performed to
eliminate the worst-performing terms. This yielded the specification shown in the main text.
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Table A1: Med income Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 4.757∗∗∗

(0.732) (1.259)

med income.seg −4.711∗∗∗

(1.431)

pct white 1.167 1.971
(2.136) (2.187)

pct asian 0.799 1.032
(1.990) (2.043)

pct some college 1.892 −2.683
(3.523) (3.865)

pct bachelors −0.558 −5.987
(3.686) (4.076)

pct democrat 2.192 −0.427
(5.152) (5.342)

population 1.222 1.149
(1.260) (1.357)

med age −0.008 0.116
(0.294) (0.300)

pct yes prop 16 −5.841∗∗ −6.310∗∗

(2.698) (2.753)

pct yes prop 23 −11.490∗∗ −15.430∗∗∗

(5.492) (5.804)

pct trump 1.256 2.051
(1.714) (1.749)

pct manufacturing −1.486 −3.507
(4.407) (4.576)

pct agri −0.324 −1.224
(3.043) (3.181)

hydro −0.439∗∗ −0.404∗

(0.210) (0.214)

pv 1.032 1.096
(1.248) (1.265)

temp jan 0.512 0.308
(0.398) (0.408)

temp aug −0.636∗ −0.477
(0.331) (0.342)

not PGE SCE −3.194∗∗∗ −3.329∗∗∗

(1.133) (1.139)

Constant 5.258 8.797
(5.175) (5.449)

Observations 470 470
Log Likelihood −169.797 −164.360
Akaike Inf. Crit. 377.593 368.720

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A2: Pct white Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.579∗∗

(0.732) (0.757)

pct white 1.167 143.844∗∗

(2.136) (67.744)

pct white.seg −141.784∗∗

(67.513)

pct asian 0.799 0.895
(1.990) (1.992)

pct some college 1.892 −2.918
(3.523) (3.868)

pct bachelors −0.558 −5.268
(3.686) (4.002)

pct democrat 2.192 1.822
(5.152) (5.215)

population 1.222 0.802
(1.260) (1.313)

med age −0.008 0.016
(0.294) (0.300)

pct yes prop 16 −5.841∗∗ −5.939∗∗

(2.698) (2.825)

pct yes prop 23 −11.490∗∗ −12.613∗∗

(5.492) (5.585)

pct trump 1.256 1.056
(1.714) (1.705)

pct manufacturing −1.486 0.912
(4.407) (4.562)

pct agri −0.324 −3.388
(3.043) (3.385)

hydro −0.439∗∗ −0.352∗

(0.210) (0.213)

pv 1.032 0.994
(1.248) (1.229)

temp jan 0.512 0.517
(0.398) (0.403)

temp aug −0.636∗ −0.612∗

(0.331) (0.332)

not PGE SCE −3.194∗∗∗ −3.125∗∗∗

(1.133) (1.115)

Constant 5.258 2.292
(5.175) (5.914)

Observations 470 470
Log Likelihood −169.797 −165.128
Akaike Inf. Crit. 377.593 370.257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A3: Pct asian Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.362∗

(0.732) (0.746)

pct white 1.167 1.903
(2.136) (2.198)

pct asian 0.799 52.616∗∗∗

(1.990) (20.354)

pct asian.seg −52.171∗∗

(20.381)

pct some college 1.892 0.067
(3.523) (3.627)

pct bachelors −0.558 −2.805
(3.686) (3.796)

pct democrat 2.192 1.889
(5.152) (5.276)

population 1.222 0.694
(1.260) (1.273)

med age −0.008 0.086
(0.294) (0.298)

pct yes prop 16 −5.841∗∗ −5.849∗∗

(2.698) (2.757)

pct yes prop 23 −11.490∗∗ −12.467∗∗

(5.492) (5.609)

pct trump 1.256 1.388
(1.714) (1.719)

pct manufacturing −1.486 −0.203
(4.407) (4.503)

pct agri −0.324 0.528
(3.043) (3.105)

hydro −0.439∗∗ −0.388∗

(0.210) (0.210)

pv 1.032 0.917
(1.248) (1.272)

temp jan 0.512 0.385
(0.398) (0.411)

temp aug −0.636∗ −0.692∗∗

(0.331) (0.339)

not PGE SCE −3.194∗∗∗ −2.771∗∗

(1.133) (1.102)

Constant 5.258 6.324
(5.175) (5.274)

Observations 470 470
Log Likelihood −169.797 −166.231
Akaike Inf. Crit. 377.593 372.462

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A4: Pct some college Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.947∗∗

(0.732) (0.771)

pct white 1.167 0.954
(2.136) (2.155)

pct asian 0.799 0.537
(1.990) (2.016)

pct some college 1.892 19.694∗

(3.523) (10.058)

pct some college.seg −18.746∗

(10.039)

pct bachelors −0.558 −1.211
(3.686) (3.724)

pct democrat 2.192 0.443
(5.152) (5.250)

population 1.222 1.140
(1.260) (1.282)

med age −0.008 0.026
(0.294) (0.293)

pct yes prop 16 −5.841∗∗ −6.091∗∗

(2.698) (2.745)

pct yes prop 23 −11.490∗∗ −13.380∗∗

(5.492) (5.649)

pct trump 1.256 1.184
(1.714) (1.708)

pct manufacturing −1.486 −1.609
(4.407) (4.411)

pct agri −0.324 −0.522
(3.043) (3.074)

hydro −0.439∗∗ −0.478∗∗

(0.210) (0.213)

pv 1.032 1.057
(1.248) (1.263)

temp jan 0.512 0.451
(0.398) (0.402)

temp aug −0.636∗ −0.561∗

(0.331) (0.335)

not PGE SCE −3.194∗∗∗ −3.170∗∗∗

(1.133) (1.126)

Constant 5.258 2.131
(5.175) (5.400)

Observations 470 470
Log Likelihood −169.797 −168.255
Akaike Inf. Crit. 377.593 376.510

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A5: Pct bachelors Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.944∗∗

(0.732) (0.780)

pct white 1.167 0.993
(2.136) (2.157)

pct asian 0.799 0.527
(1.990) (2.019)

pct some college 1.892 0.989
(3.523) (3.586)

pct bachelors −0.558 −1.205
(3.686) (3.735)

pct bachelors.seg −17.543∗

(9.583)

pct democrat 2.192 0.598
(5.152) (5.240)

population 1.222 1.136
(1.260) (1.276)

med age −0.008 0.021
(0.294) (0.294)

pct yes prop 16 −5.841∗∗ −6.027∗∗

(2.698) (2.743)

pct yes prop 23 −11.490∗∗ −13.254∗∗

(5.492) (5.646)

pct trump 1.256 1.185
(1.714) (1.708)

pct manufacturing −1.486 −1.699
(4.407) (4.416)

pct agri −0.324 −0.516
(3.043) (3.071)

hydro −0.439∗∗ −0.474∗∗

(0.210) (0.213)

pv 1.032 1.054
(1.248) (1.261)

temp jan 0.512 0.454
(0.398) (0.401)

temp aug −0.636∗ −0.560∗

(0.331) (0.335)

not PGE SCE −3.194∗∗∗ −3.117∗∗∗

(1.133) (1.123)

Constant 5.258 6.891
(5.175) (5.286)

Observations 470 470
Log Likelihood −169.797 −168.321
Akaike Inf. Crit. 377.593 376.642

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A6: Pct democrat Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.340∗

(0.732) (0.724)

pct white 1.167 1.192
(2.136) (2.142)

pct asian 0.799 0.869
(1.990) (2.016)

pct some college 1.892 2.156
(3.523) (3.538)

pct bachelors −0.558 0.120
(3.686) (3.734)

pct democrat 2.192 −4.789
(5.152) (6.861)

pct democrat.seg 9.174
(6.376)

population 1.222 1.231
(1.260) (1.263)

med age −0.008 −0.036
(0.294) (0.296)

pct yes prop 16 −5.841∗∗ −5.901∗∗

(2.698) (2.728)

pct yes prop 23 −11.490∗∗ −10.996∗∗

(5.492) (5.411)

pct trump 1.256 1.241
(1.714) (1.644)

pct manufacturing −1.486 −1.239
(4.407) (4.431)

pct agri −0.324 −0.253
(3.043) (3.034)

hydro −0.439∗∗ −0.449∗∗

(0.210) (0.210)

pv 1.032 1.209
(1.248) (1.257)

temp jan 0.512 0.540
(0.398) (0.398)

temp aug −0.636∗ −0.664∗∗

(0.331) (0.332)

not PGE SCE −3.194∗∗∗ −3.153∗∗∗

(1.133) (1.133)

Constant 5.258 7.205
(5.175) (5.283)

Observations 470 470
Log Likelihood −169.797 −168.828
Akaike Inf. Crit. 377.593 377.657

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A7: Population Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.623∗∗

(0.732) (0.738)

pct white 1.167 1.668
(2.136) (2.161)

pct asian 0.799 0.744
(1.990) (1.981)

pct some college 1.892 1.121
(3.523) (3.580)

pct bachelors −0.558 −1.649
(3.686) (3.749)

pct democrat 2.192 2.498
(5.152) (5.198)

population 1.222 20.729∗∗

(1.260) (10.495)

population.seg −20.298∗

(10.833)

med age −0.008 0.137
(0.294) (0.304)

pct yes prop 16 −5.841∗∗ −6.075∗∗

(2.698) (2.781)

pct yes prop 23 −11.490∗∗ −11.686∗∗

(5.492) (5.544)

pct trump 1.256 1.799
(1.714) (1.771)

pct manufacturing −1.486 −2.518
(4.407) (4.461)

pct agri −0.324 0.518
(3.043) (3.080)

hydro −0.439∗∗ −0.371∗

(0.210) (0.213)

pv 1.032 0.856
(1.248) (1.289)

temp jan 0.512 0.416
(0.398) (0.402)

temp aug −0.636∗ −0.712∗∗

(0.331) (0.338)

not PGE SCE −3.194∗∗∗ −3.053∗∗∗

(1.133) (1.103)

Constant 5.258 5.453
(5.175) (5.173)

Observations 470 470
Log Likelihood −169.797 −167.999
Akaike Inf. Crit. 377.593 375.997

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A8: Med age Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.354∗

(0.732) (0.753)

pct white 1.167 0.862
(2.136) (2.173)

pct asian 0.799 0.442
(1.990) (2.038)

pct some college 1.892 1.524
(3.523) (3.549)

pct bachelors −0.558 −0.533
(3.686) (3.683)

pct democrat 2.192 2.449
(5.152) (5.157)

population 1.222 1.281
(1.260) (1.266)

med age −0.008 0.303
(0.294) (0.509)

med age.seg −0.600
(0.809)

pct yes prop 16 −5.841∗∗ −5.889∗∗

(2.698) (2.716)

pct yes prop 23 −11.490∗∗ −11.278∗∗

(5.492) (5.497)

pct trump 1.256 1.419
(1.714) (1.726)

pct manufacturing −1.486 −1.214
(4.407) (4.422)

pct agri −0.324 −0.210
(3.043) (3.047)

hydro −0.439∗∗ −0.473∗∗

(0.210) (0.216)

pv 1.032 0.945
(1.248) (1.263)

temp jan 0.512 0.469
(0.398) (0.401)

temp aug −0.636∗ −0.604∗

(0.331) (0.335)

not PGE SCE −3.194∗∗∗ −3.201∗∗∗

(1.133) (1.132)

Constant 5.258 4.302
(5.175) (5.319)

Observations 470 470
Log Likelihood −169.797 −169.516
Akaike Inf. Crit. 377.593 379.032

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A9: Pct yes prop 16 Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.502∗∗

(0.732) (0.755)

pct white 1.167 0.276
(2.136) (2.182)

pct asian 0.799 0.104
(1.990) (2.005)

pct some college 1.892 3.190
(3.523) (3.678)

pct bachelors −0.558 0.346
(3.686) (3.820)

pct democrat 2.192 0.696
(5.152) (5.239)

population 1.222 1.390
(1.260) (1.289)

med age −0.008 0.103
(0.294) (0.309)

pct yes prop 16 −5.841∗∗ −8.778∗∗∗

(2.698) (3.222)

pct yes prop 16.seg 67.438∗∗∗

(16.733)

pct yes prop 23 −11.490∗∗ −12.195∗∗

(5.492) (5.761)

pct trump 1.256 0.827
(1.714) (1.746)

pct manufacturing −1.486 −1.308
(4.407) (4.509)

pct agri −0.324 0.460
(3.043) (3.150)

hydro −0.439∗∗ −0.366∗

(0.210) (0.210)

pv 1.032 0.745
(1.248) (1.308)

temp jan 0.512 0.572
(0.398) (0.404)

temp aug −0.636∗ −0.765∗∗

(0.331) (0.344)

not PGE SCE −3.194∗∗∗ −3.295∗∗∗

(1.133) (1.143)

Constant 5.258 7.275
(5.175) (5.445)

Observations 470 470
Log Likelihood −169.797 −163.130
Akaike Inf. Crit. 377.593 366.261

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A10: Pct yes prop 23 Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.436∗∗

(0.732) (0.724)

pct white 1.167 0.981
(2.136) (2.152)

pct asian 0.799 0.714
(1.990) (2.006)

pct some college 1.892 2.626
(3.523) (3.585)

pct bachelors −0.558 0.106
(3.686) (3.739)

pct democrat 2.192 1.890
(5.152) (5.144)

population 1.222 1.301
(1.260) (1.269)

med age −0.008 −0.006
(0.294) (0.299)

pct yes prop 16 −5.841∗∗ −5.754∗∗

(2.698) (2.746)

pct yes prop 23 −11.490∗∗ −14.747∗∗

(5.492) (5.997)

pct yes prop 23.seg 8.737
(6.373)

pct trump 1.256 1.288
(1.714) (1.641)

pct manufacturing −1.486 −1.802
(4.407) (4.424)

pct agri −0.324 0.211
(3.043) (3.086)

hydro −0.439∗∗ −0.428∗∗

(0.210) (0.211)

pv 1.032 0.965
(1.248) (1.217)

temp jan 0.512 0.509
(0.398) (0.398)

temp aug −0.636∗ −0.648∗

(0.331) (0.333)

not PGE SCE −3.194∗∗∗ −3.178∗∗∗

(1.133) (1.138)

Constant 5.258 6.089
(5.175) (5.229)

Observations 470 470
Log Likelihood −169.797 −168.880
Akaike Inf. Crit. 377.593 377.761

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A11: Pct trump Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.391∗

(0.732) (0.734)

pct white 1.167 1.050
(2.136) (2.159)

pct asian 0.799 0.931
(1.990) (2.003)

pct some college 1.892 1.508
(3.523) (3.551)

pct bachelors −0.558 −0.205
(3.686) (3.704)

pct democrat 2.192 6.066
(5.152) (5.596)

population 1.222 1.103
(1.260) (1.280)

med age −0.008 −0.042
(0.294) (0.299)

pct yes prop 16 −5.841∗∗ −6.476∗∗

(2.698) (2.787)

pct yes prop 23 −11.490∗∗ −12.923∗∗

(5.492) (5.616)

pct trump 1.256 −61.621∗∗

(1.714) (27.964)

pct trump.seg 67.590∗∗

(30.421)

pct manufacturing −1.486 −0.903
(4.407) (4.426)

pct agri −0.324 −0.329
(3.043) (3.070)

hydro −0.439∗∗ −0.432∗∗

(0.210) (0.211)

pv 1.032 1.487
(1.248) (1.152)

temp jan 0.512 0.556
(0.398) (0.399)

temp aug −0.636∗ −0.725∗∗

(0.331) (0.338)

not PGE SCE −3.194∗∗∗ −3.047∗∗∗

(1.133) (1.132)

Constant 5.258 10.171∗

(5.175) (5.568)

Observations 470 470
Log Likelihood −169.797 −167.051
Akaike Inf. Crit. 377.593 374.102

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A12: Pct manufacturing Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.443∗

(0.732) (0.739)

pct white 1.167 1.456
(2.136) (2.142)

pct asian 0.799 1.123
(1.990) (1.986)

pct some college 1.892 1.069
(3.523) (3.594)

pct bachelors −0.558 −1.300
(3.686) (3.723)

pct democrat 2.192 1.790
(5.152) (5.155)

population 1.222 1.054
(1.260) (1.259)

med age −0.008 −0.002
(0.294) (0.296)

pct yes prop 16 −5.841∗∗ −5.886∗∗

(2.698) (2.716)

pct yes prop 23 −11.490∗∗ −12.400∗∗

(5.492) (5.553)

pct trump 1.256 1.298
(1.714) (1.711)

pct manufacturing −1.486 4.232
(4.407) (6.452)

pct manufacturing.seg −16.849
(13.751)

pct agri −0.324 −0.598
(3.043) (3.084)

hydro −0.439∗∗ −0.470∗∗

(0.210) (0.211)

pv 1.032 1.036
(1.248) (1.247)

temp jan 0.512 0.438
(0.398) (0.403)

temp aug −0.636∗ −0.613∗

(0.331) (0.335)

not PGE SCE −3.194∗∗∗ −3.201∗∗∗

(1.133) (1.127)

Constant 5.258 6.175
(5.175) (5.248)

Observations 470 470
Log Likelihood −169.797 −169.044
Akaike Inf. Crit. 377.593 378.087

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A13: Pct agri Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.454∗∗

(0.732) (0.731)

pct white 1.167 0.985
(2.136) (2.143)

pct asian 0.799 0.459
(1.990) (2.030)

pct some college 1.892 2.337
(3.523) (3.557)

pct bachelors −0.558 −0.536
(3.686) (3.684)

pct democrat 2.192 1.290
(5.152) (5.229)

population 1.222 1.205
(1.260) (1.269)

med age −0.008 0.009
(0.294) (0.294)

pct yes prop 16 −5.841∗∗ −6.309∗∗

(2.698) (2.720)

pct yes prop 23 −11.490∗∗ −11.943∗∗

(5.492) (5.504)

pct trump 1.256 1.108
(1.714) (1.714)

pct manufacturing −1.486 −0.808
(4.407) (4.462)

pct agri −0.324 −12.573
(3.043) (13.647)

pct agri.seg 13.814
(15.005)

hydro −0.439∗∗ −0.478∗∗

(0.210) (0.214)

pv 1.032 1.171
(1.248) (1.260)

temp jan 0.512 0.495
(0.398) (0.395)

temp aug −0.636∗ −0.664∗∗

(0.331) (0.332)

not PGE SCE −3.194∗∗∗ −3.207∗∗∗

(1.133) (1.134)

Constant 5.258 6.375
(5.175) (5.293)

Observations 470 470
Log Likelihood −169.797 −169.371
Akaike Inf. Crit. 377.593 378.741

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A14: Hydro Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 0.849
(0.732) (0.775)

pct white 1.167 1.760
(2.136) (2.141)

pct asian 0.799 0.803
(1.990) (1.998)

pct some college 1.892 0.501
(3.523) (3.583)

pct bachelors −0.558 −0.993
(3.686) (3.642)

pct democrat 2.192 1.184
(5.152) (5.193)

population 1.222 1.291
(1.260) (1.275)

med age −0.008 −0.034
(0.294) (0.292)

pct yes prop 16 −5.841∗∗ −5.192∗

(2.698) (2.750)

pct yes prop 23 −11.490∗∗ −10.662∗

(5.492) (5.584)

pct trump 1.256 1.114
(1.714) (1.707)

pct manufacturing −1.486 −2.074
(4.407) (4.468)

pct agri −0.324 −1.551
(3.043) (3.161)

hydro −0.439∗∗ −221.306∗∗

(0.210) (91.290)

hydro.seg 221.173∗∗

(91.415)

pv 1.032 0.913
(1.248) (1.219)

temp jan 0.512 0.583
(0.398) (0.416)

temp aug −0.636∗ −0.384
(0.331) (0.345)

not PGE SCE −3.194∗∗∗ −2.846∗∗

(1.133) (1.132)

Constant 5.258 4.881
(5.175) (5.245)

Observations 470 470
Log Likelihood −169.797 −166.904
Akaike Inf. Crit. 377.593 373.807

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

79



Table A15: PV Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.453∗∗

(0.732) (0.734)

pct white 1.167 1.225
(2.136) (2.137)

pct asian 0.799 0.786
(1.990) (1.990)

pct some college 1.892 1.812
(3.523) (3.535)

pct bachelors −0.558 −0.515
(3.686) (3.692)

pct democrat 2.192 2.240
(5.152) (5.148)

population 1.222 1.081
(1.260) (1.305)

med age −0.008 −0.002
(0.294) (0.294)

pct yes prop 16 −5.841∗∗ −5.595∗∗

(2.698) (2.764)

pct yes prop 23 −11.490∗∗ −11.459∗∗

(5.492) (5.501)

pct trump 1.256 1.242
(1.714) (1.721)

pct manufacturing −1.486 −1.499
(4.407) (4.399)

pct agri −0.324 −0.413
(3.043) (3.056)

hydro −0.439∗∗ −0.419∗

(0.210) (0.214)

pv 1.032 1,091,095.000
(1.248) (2,558,244.000)

pv.seg −1,091,094.000
(2,558,244.000)

temp jan 0.512 0.529
(0.398) (0.401)

temp aug −0.636∗ −0.672∗∗

(0.331) (0.343)

not PGE SCE −3.194∗∗∗ −3.168∗∗∗

(1.133) (1.132)

Constant 5.258 5.246
(5.175) (5.166)

Observations 470 470
Log Likelihood −169.797 −169.706
Akaike Inf. Crit. 377.593 379.412

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A16: Temp jan Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 0.646
(0.732) (0.764)

pct white 1.167 1.754
(2.136) (2.215)

pct asian 0.799 1.443
(1.990) (2.050)

pct some college 1.892 1.159
(3.523) (3.647)

pct bachelors −0.558 0.689
(3.686) (3.733)

pct democrat 2.192 5.174
(5.152) (5.508)

population 1.222 1.445
(1.260) (1.331)

med age −0.008 −0.027
(0.294) (0.310)

pct yes prop 16 −5.841∗∗ −5.302∗

(2.698) (2.741)

pct yes prop 23 −11.490∗∗ −6.393
(5.492) (5.967)

pct trump 1.256 0.945
(1.714) (1.786)

pct manufacturing −1.486 −0.548
(4.407) (4.473)

pct agri −0.324 −0.618
(3.043) (3.173)

hydro −0.439∗∗ −0.576∗∗∗

(0.210) (0.220)

pv 1.032 0.571
(1.248) (1.294)

temp jan 0.512 1.254∗∗

(0.398) (0.488)

temp jan.seg −9.552∗∗∗

(2.805)

temp aug −0.636∗ −0.688∗∗

(0.331) (0.345)

not PGE SCE −3.194∗∗∗ −3.156∗∗∗

(1.133) (1.157)

Constant 5.258 −0.909
(5.175) (5.753)

Observations 470 470
Log Likelihood −169.797 −162.143
Akaike Inf. Crit. 377.593 364.285

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A17: Temp aug Sensitivity

Linear Piecewise Linear

med income 1.480∗∗ 1.628∗∗

(0.732) (0.747)

pct white 1.167 1.527
(2.136) (2.202)

pct asian 0.799 1.352
(1.990) (2.069)

pct some college 1.892 1.802
(3.523) (3.594)

pct bachelors −0.558 −1.013
(3.686) (3.703)

pct democrat 2.192 3.390
(5.152) (5.352)

population 1.222 1.269
(1.260) (1.295)

med age −0.008 −0.054
(0.294) (0.298)

pct yes prop 16 −5.841∗∗ −6.791∗∗

(2.698) (2.763)

pct yes prop 23 −11.490∗∗ −9.442∗

(5.492) (5.663)

pct trump 1.256 1.337
(1.714) (1.738)

pct manufacturing −1.486 1.700
(4.407) (4.610)

pct agri −0.324 −0.178
(3.043) (3.177)

hydro −0.439∗∗ −0.131
(0.210) (0.230)

pv 1.032 −0.018
(1.248) (1.220)

temp jan 0.512 0.443
(0.398) (0.392)

temp aug −0.636∗ −1.641∗∗∗

(0.331) (0.454)

temp aug.seg 3.655∗∗∗

(1.088)

not PGE SCE −3.194∗∗∗ −3.216∗∗∗

(1.133) (1.145)

Constant 5.258 11.374∗∗

(5.175) (5.685)

Observations 470 470
Log Likelihood −169.797 −164.016
Akaike Inf. Crit. 377.593 368.033

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix B - Percent Renewable

Appendix B follows a similar structure to Appendix A. We show the effect of adding piecewise linear terms to the
generalized linear model predicting the percentage of electricity from renewable sources as a function of various
community characteristics. The tables below display results for two samples: the first includes all communities that
are served by CCAs and only by IOUs, and the second includes only communities that are served by a CCA.
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Table B1: Effect of Segmenting med income on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.090∗∗ 0.125∗∗ −0.608∗

(0.025) (0.045) (0.051) (0.316)

med income.seg.r −0.073 0.748∗∗

(0.051) (0.319)

pct white 0.023 0.034 0.318 0.228
(0.075) (0.076) (0.209) (0.210)

pct asian −0.065 −0.063 0.238 0.176
(0.075) (0.075) (0.193) (0.192)

pct some college −0.002 −0.064 0.089 0.256
(0.134) (0.141) (0.465) (0.464)

pct bachelors 0.137 0.055 −0.206 0.004
(0.136) (0.147) (0.435) (0.438)

pct democrat 0.041 0.001 0.233 0.390
(0.175) (0.177) (0.509) (0.506)

population 0.018 0.013 0.037 0.057
(0.048) (0.048) (0.096) (0.095)

med age −0.001 0.0005 0.006 0.014
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.261∗∗∗ 0.194 0.210
(0.097) (0.097) (0.197) (0.194)

pct yes prop 23 −0.162 −0.215 −0.146 −0.005
(0.190) (0.193) (0.589) (0.583)

pct trump −0.116∗∗ −0.110∗∗ −0.275 −0.268
(0.051) (0.051) (0.176) (0.174)

pct manufacturing −0.327∗∗ −0.348∗∗ −0.907∗∗ −0.869∗∗

(0.163) (0.164) (0.355) (0.350)

pct agri 0.008 −0.003 0.575 0.656∗

(0.107) (0.107) (0.355) (0.352)

hydro 0.008 0.009 −0.042 −0.050∗

(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.045 0.047 0.038
(0.045) (0.045) (0.149) (0.147)

temp jan 0.047∗∗∗ 0.040∗∗∗ −0.011 −0.015
(0.014) (0.015) (0.052) (0.051)

temp aug 0.036∗∗∗ 0.038∗∗∗ 0.065∗ 0.075∗∗

(0.013) (0.013) (0.035) (0.034)

lse size −3.881∗∗∗ −3.800∗∗∗ 34.451∗∗∗ 36.686∗∗∗

(0.345) (0.350) (5.654) (5.652)

not PGE SCE −0.194∗∗∗ −0.189∗∗∗ 0.051 0.061
(0.024) (0.024) (0.159) (0.157)

Constant −0.081 −0.014 −0.363 −0.273
(0.188) (0.194) (0.518) (0.512)

Observations 458 458 172 172
Log Likelihood 368.399 369.474 95.348 98.433
Akaike Inf. Crit. −696.797 −696.948 −150.696 −154.867

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B2: Effect of Segmenting pct white on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.042∗ 0.125∗∗ 0.132∗∗∗

(0.025) (0.025) (0.051) (0.050)

pct white 0.023 0.153∗ 0.318 0.636∗∗∗

(0.075) (0.082) (0.209) (0.222)

pct white.seg.r −0.445∗∗∗ −0.914∗∗∗

(0.121) (0.266)

pct asian −0.065 −0.049 0.238 0.347∗

(0.075) (0.074) (0.193) (0.189)

pct some college −0.002 −0.080 0.089 −0.342
(0.134) (0.134) (0.465) (0.466)

pct bachelors 0.137 0.042 −0.206 −0.589
(0.136) (0.136) (0.435) (0.435)

pct democrat 0.041 0.088 0.233 0.462
(0.175) (0.173) (0.509) (0.496)

population 0.018 0.020 0.037 0.040
(0.048) (0.048) (0.096) (0.092)

med age −0.001 0.010 0.006 0.024
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.312∗∗∗ 0.194 0.282
(0.097) (0.096) (0.197) (0.192)

pct yes prop 23 −0.162 −0.182 −0.146 −0.056
(0.190) (0.187) (0.589) (0.570)

pct trump −0.116∗∗ −0.127∗∗ −0.275 −0.205
(0.051) (0.051) (0.176) (0.171)

pct manufacturing −0.327∗∗ −0.345∗∗ −0.907∗∗ −0.967∗∗∗

(0.163) (0.161) (0.355) (0.344)

pct agri 0.008 0.008 0.575 0.480
(0.107) (0.105) (0.355) (0.344)

hydro 0.008 0.013∗ −0.042 −0.022
(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.055 0.047 0.028
(0.045) (0.044) (0.149) (0.145)

temp jan 0.047∗∗∗ 0.039∗∗∗ −0.011 −0.039
(0.014) (0.014) (0.052) (0.051)

temp aug 0.036∗∗∗ 0.038∗∗∗ 0.065∗ 0.056∗

(0.013) (0.013) (0.035) (0.034)

lse size −3.881∗∗∗ −3.832∗∗∗ 34.451∗∗∗ 33.701∗∗∗

(0.345) (0.341) (5.654) (5.467)

not PGE SCE −0.194∗∗∗ −0.189∗∗∗ 0.051 0.058
(0.024) (0.023) (0.159) (0.154)

Constant −0.081 −0.112 −0.363 −0.216
(0.188) (0.186) (0.518) (0.502)

Observations 458 458 172 172
Log Likelihood 368.399 375.442 95.348 101.823
Akaike Inf. Crit. −696.797 −708.883 −150.696 −161.646

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B3: Effect of Segmenting pct asian on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.037 0.125∗∗ 0.114∗∗

(0.025) (0.025) (0.051) (0.052)

pct white 0.023 0.041 0.318 0.382∗

(0.075) (0.076) (0.209) (0.215)

pct asian −0.065 12.459 0.238 0.558∗

(0.075) (8.184) (0.193) (0.321)

pct asian.seg.r −12.510 −0.451
(8.175) (0.361)

pct some college −0.002 0.008 0.089 −0.002
(0.134) (0.134) (0.465) (0.470)

pct bachelors 0.137 0.137 −0.206 −0.323
(0.136) (0.135) (0.435) (0.444)

pct democrat 0.041 0.079 0.233 0.175
(0.175) (0.177) (0.509) (0.510)

population 0.018 0.018 0.037 0.021
(0.048) (0.048) (0.096) (0.096)

med age −0.001 −0.001 0.006 0.011
(0.011) (0.011) (0.023) (0.024)

pct yes prop 16 0.272∗∗∗ 0.288∗∗∗ 0.194 0.232
(0.097) (0.097) (0.197) (0.199)

pct yes prop 23 −0.162 −0.147 −0.146 −0.222
(0.190) (0.190) (0.589) (0.591)

pct trump −0.116∗∗ −0.115∗∗ −0.275 −0.279
(0.051) (0.051) (0.176) (0.176)

pct manufacturing −0.327∗∗ −0.320∗ −0.907∗∗ −0.811∗∗

(0.163) (0.163) (0.355) (0.363)

pct agri 0.008 0.063 0.575 0.631∗

(0.107) (0.113) (0.355) (0.357)

hydro 0.008 0.011 −0.042 −0.039
(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.047 0.047 0.056
(0.045) (0.045) (0.149) (0.149)

temp jan 0.047∗∗∗ 0.044∗∗∗ −0.011 −0.014
(0.014) (0.014) (0.052) (0.052)

temp aug 0.036∗∗∗ 0.035∗∗∗ 0.065∗ 0.064∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.848∗∗∗ 34.451∗∗∗ 34.008∗∗∗

(0.345) (0.346) (5.654) (5.654)

not PGE SCE −0.194∗∗∗ −0.186∗∗∗ 0.051 0.057
(0.024) (0.024) (0.159) (0.159)

Constant −0.081 −0.157 −0.363 −0.288
(0.188) (0.194) (0.518) (0.520)

Observations 458 458 172 172
Log Likelihood 368.399 369.622 95.348 96.234
Akaike Inf. Crit. −696.797 −697.245 −150.696 −150.468

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B4: Effect of Segmenting pct some college on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.063∗∗ 0.125∗∗ 0.157∗∗∗

(0.025) (0.028) (0.051) (0.058)

pct white 0.023 0.019 0.318 0.311
(0.075) (0.075) (0.209) (0.209)

pct asian −0.065 −0.072 0.238 0.221
(0.075) (0.074) (0.193) (0.194)

pct some college −0.002 0.645∗ 0.089 0.627
(0.134) (0.331) (0.465) (0.662)

pct some college.seg.r −0.701∗∗ −0.651
(0.327) (0.571)

pct bachelors 0.137 0.104 −0.206 −0.287
(0.136) (0.136) (0.435) (0.440)

pct democrat 0.041 −0.022 0.233 0.134
(0.175) (0.177) (0.509) (0.516)

population 0.018 0.010 0.037 0.022
(0.048) (0.048) (0.096) (0.096)

med age −0.001 −0.0002 0.006 0.007
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.260∗∗∗ 0.194 0.167
(0.097) (0.096) (0.197) (0.198)

pct yes prop 23 −0.162 −0.237 −0.146 −0.247
(0.190) (0.192) (0.589) (0.595)

pct trump −0.116∗∗ −0.119∗∗ −0.275 −0.268
(0.051) (0.051) (0.176) (0.176)

pct manufacturing −0.327∗∗ −0.328∗∗ −0.907∗∗ −0.929∗∗∗

(0.163) (0.163) (0.355) (0.355)

pct agri 0.008 −0.001 0.575 0.521
(0.107) (0.106) (0.355) (0.358)

hydro 0.008 0.007 −0.042 −0.044
(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.044 0.047 0.059
(0.045) (0.044) (0.149) (0.150)

temp jan 0.047∗∗∗ 0.040∗∗∗ −0.011 −0.013
(0.014) (0.015) (0.052) (0.052)

temp aug 0.036∗∗∗ 0.040∗∗∗ 0.065∗ 0.071∗∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.822∗∗∗ 34.451∗∗∗ 33.814∗∗∗

(0.345) (0.345) (5.654) (5.675)

not PGE SCE −0.194∗∗∗ −0.188∗∗∗ 0.051 0.046
(0.024) (0.024) (0.159) (0.159)

Constant −0.081 −0.192 −0.363 −0.414
(0.188) (0.195) (0.518) (0.519)

Observations 458 458 172 172
Log Likelihood 368.399 370.788 95.348 96.087
Akaike Inf. Crit. −696.797 −699.577 −150.696 −150.174

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B5: Effect of Segmenting pct bachelors on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.058∗∗ 0.125∗∗ 0.128∗∗

(0.025) (0.028) (0.051) (0.052)

pct white 0.023 0.019 0.318 0.349
(0.075) (0.075) (0.209) (0.217)

pct asian −0.065 −0.074 0.238 0.261
(0.075) (0.075) (0.193) (0.198)

pct some college −0.002 −0.044 0.089 0.010
(0.134) (0.136) (0.465) (0.488)

pct bachelors 0.137 0.112 −0.206 0.231
(0.136) (0.136) (0.435) (0.910)

pct bachelors.seg.r −0.471 −0.517
(0.288) (0.947)

pct democrat 0.041 −0.002 0.233 0.272
(0.175) (0.177) (0.509) (0.515)

population 0.018 0.012 0.037 0.029
(0.048) (0.048) (0.096) (0.097)

med age −0.001 0.0001 0.006 0.003
(0.011) (0.011) (0.023) (0.024)

pct yes prop 16 0.272∗∗∗ 0.264∗∗∗ 0.194 0.204
(0.097) (0.097) (0.197) (0.199)

pct yes prop 23 −0.162 −0.216 −0.146 −0.115
(0.190) (0.192) (0.589) (0.593)

pct trump −0.116∗∗ −0.117∗∗ −0.275 −0.271
(0.051) (0.051) (0.176) (0.177)

pct manufacturing −0.327∗∗ −0.335∗∗ −0.907∗∗ −0.899∗∗

(0.163) (0.163) (0.355) (0.356)

pct agri 0.008 −0.001 0.575 0.653∗

(0.107) (0.107) (0.355) (0.384)

hydro 0.008 0.007 −0.042 −0.039
(0.007) (0.007) (0.028) (0.029)

pv −0.047 −0.045 0.047 0.034
(0.045) (0.045) (0.149) (0.152)

temp jan 0.047∗∗∗ 0.041∗∗∗ −0.011 −0.008
(0.014) (0.015) (0.052) (0.052)

temp aug 0.036∗∗∗ 0.039∗∗∗ 0.065∗ 0.066∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.833∗∗∗ 34.451∗∗∗ 33.756∗∗∗

(0.345) (0.346) (5.654) (5.807)

not PGE SCE −0.194∗∗∗ −0.189∗∗∗ 0.051 0.049
(0.024) (0.024) (0.159) (0.160)

Constant −0.081 −0.018 −0.363 −0.449
(0.188) (0.192) (0.518) (0.542)

Observations 458 458 172 172
Log Likelihood 368.399 369.797 95.348 95.518
Akaike Inf. Crit. −696.797 −697.593 −150.696 −149.036

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B6: Effect of Segmenting pct democrat on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.035 0.125∗∗ 0.110∗∗

(0.025) (0.025) (0.051) (0.051)

pct white 0.023 0.023 0.318 0.382∗

(0.075) (0.075) (0.209) (0.208)

pct asian −0.065 −0.064 0.238 0.290
(0.075) (0.075) (0.193) (0.191)

pct some college −0.002 0.001 0.089 −0.038
(0.134) (0.134) (0.465) (0.461)

pct bachelors 0.137 0.144 −0.206 −0.264
(0.136) (0.136) (0.435) (0.429)

pct democrat 0.041 −0.289 0.233 0.675
(0.175) (0.412) (0.509) (0.534)

pct democrat.seg.r 0.368 −1.308∗∗

(0.414) (0.544)

population 0.018 0.017 0.037 0.044
(0.048) (0.048) (0.096) (0.094)

med age −0.001 −0.001 0.006 −0.003
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.268∗∗∗ 0.194 0.107
(0.097) (0.097) (0.197) (0.198)

pct yes prop 23 −0.162 −0.137 −0.146 0.107
(0.190) (0.192) (0.589) (0.589)

pct trump −0.116∗∗ −0.118∗∗ −0.275 −0.264
(0.051) (0.051) (0.176) (0.174)

pct manufacturing −0.327∗∗ −0.317∗ −0.907∗∗ −1.023∗∗∗

(0.163) (0.164) (0.355) (0.353)

pct agri 0.008 0.004 0.575 0.515
(0.107) (0.107) (0.355) (0.351)

hydro 0.008 0.008 −0.042 −0.047∗

(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.044 0.047 0.050
(0.045) (0.045) (0.149) (0.147)

temp jan 0.047∗∗∗ 0.048∗∗∗ −0.011 −0.033
(0.014) (0.014) (0.052) (0.052)

temp aug 0.036∗∗∗ 0.035∗∗∗ 0.065∗ 0.074∗∗

(0.013) (0.013) (0.035) (0.034)

lse size −3.881∗∗∗ −3.876∗∗∗ 34.451∗∗∗ 36.513∗∗∗

(0.345) (0.346) (5.654) (5.633)

not PGE SCE −0.194∗∗∗ −0.193∗∗∗ 0.051 0.063
(0.024) (0.024) (0.159) (0.157)

Constant −0.081 −0.013 −0.363 −0.471
(0.188) (0.204) (0.518) (0.512)

Observations 458 458 172 172
Log Likelihood 368.399 368.811 95.348 98.573
Akaike Inf. Crit. −696.797 −695.622 −150.696 −155.146

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B7: Effect of Segmenting population on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.043∗ 0.125∗∗ 0.122∗∗

(0.025) (0.025) (0.051) (0.051)

pct white 0.023 0.030 0.318 0.294
(0.075) (0.075) (0.209) (0.211)

pct asian −0.065 −0.058 0.238 0.220
(0.075) (0.074) (0.193) (0.194)

pct some college −0.002 −0.001 0.089 0.099
(0.134) (0.134) (0.465) (0.465)

pct bachelors 0.137 0.116 −0.206 −0.188
(0.136) (0.136) (0.435) (0.435)

pct democrat 0.041 0.073 0.233 0.237
(0.175) (0.176) (0.509) (0.509)

population 0.018 8.495∗ 0.037 11.083
(0.048) (4.868) (0.096) (12.113)

population.seg.r −8.480∗ −11.050
(4.871) (12.117)

med age −0.001 0.003 0.006 0.013
(0.011) (0.011) (0.023) (0.025)

pct yes prop 16 0.272∗∗∗ 0.261∗∗∗ 0.194 0.166
(0.097) (0.097) (0.197) (0.200)

pct yes prop 23 −0.162 −0.140 −0.146 −0.099
(0.190) (0.190) (0.589) (0.591)

pct trump −0.116∗∗ −0.101∗ −0.275 −0.277
(0.051) (0.052) (0.176) (0.176)

pct manufacturing −0.327∗∗ −0.355∗∗ −0.907∗∗ −0.961∗∗∗

(0.163) (0.164) (0.355) (0.360)

pct agri 0.008 0.018 0.575 0.563
(0.107) (0.107) (0.355) (0.356)

hydro 0.008 0.009 −0.042 −0.041
(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.049 0.047 0.044
(0.045) (0.045) (0.149) (0.150)

temp jan 0.047∗∗∗ 0.043∗∗∗ −0.011 −0.017
(0.014) (0.014) (0.052) (0.052)

temp aug 0.036∗∗∗ 0.033∗∗ 0.065∗ 0.060∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.851∗∗∗ 34.451∗∗∗ 34.086∗∗∗

(0.345) (0.345) (5.654) (5.671)

not PGE SCE −0.194∗∗∗ −0.186∗∗∗ 0.051 0.045
(0.024) (0.024) (0.159) (0.159)

Constant −0.081 −0.127 −0.363 −0.382
(0.188) (0.190) (0.518) (0.519)

Observations 458 458 172 172
Log Likelihood 368.399 369.982 95.348 95.820
Akaike Inf. Crit. −696.797 −697.963 −150.696 −149.641

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B8: Effect of Segmenting med age on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.014 0.125∗∗ 0.097∗

(0.025) (0.025) (0.051) (0.052)

pct white 0.023 −0.030 0.318 0.298
(0.075) (0.076) (0.209) (0.207)

pct asian −0.065 −0.134∗ 0.238 0.175
(0.075) (0.076) (0.193) (0.193)

pct some college −0.002 −0.057 0.089 −0.013
(0.134) (0.133) (0.465) (0.462)

pct bachelors 0.137 0.154 −0.206 −0.189
(0.136) (0.134) (0.435) (0.429)

pct democrat 0.041 0.049 0.233 0.204
(0.175) (0.173) (0.509) (0.502)

population 0.018 0.026 0.037 0.011
(0.048) (0.048) (0.096) (0.095)

med age −0.001 0.054∗∗∗ 0.006 0.123∗∗

(0.011) (0.018) (0.023) (0.057)

med age.seg.r −0.103∗∗∗ −0.157∗∗

(0.028) (0.071)

pct yes prop 16 0.272∗∗∗ 0.264∗∗∗ 0.194 0.215
(0.097) (0.095) (0.197) (0.195)

pct yes prop 23 −0.162 −0.157 −0.146 −0.143
(0.190) (0.187) (0.589) (0.581)

pct trump −0.116∗∗ −0.100∗∗ −0.275 −0.319∗

(0.051) (0.051) (0.176) (0.175)

pct manufacturing −0.327∗∗ −0.300∗ −0.907∗∗ −0.882∗∗

(0.163) (0.161) (0.355) (0.351)

pct agri 0.008 0.034 0.575 0.673∗

(0.107) (0.106) (0.355) (0.354)

hydro 0.008 0.003 −0.042 −0.049∗

(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.055 0.047 0.064
(0.045) (0.044) (0.149) (0.148)

temp jan 0.047∗∗∗ 0.041∗∗∗ −0.011 0.003
(0.014) (0.014) (0.052) (0.051)

temp aug 0.036∗∗∗ 0.043∗∗∗ 0.065∗ 0.078∗∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.894∗∗∗ 34.451∗∗∗ 31.905∗∗∗

(0.345) (0.341) (5.654) (5.700)

not PGE SCE −0.194∗∗∗ −0.200∗∗∗ 0.051 −0.0002
(0.024) (0.024) (0.159) (0.159)

Constant −0.081 −0.244 −0.363 −0.822
(0.188) (0.191) (0.518) (0.552)

Observations 458 458 172 172
Log Likelihood 368.399 375.390 95.348 98.087
Akaike Inf. Crit. −696.797 −708.779 −150.696 −154.174

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B9: Effect of Segmenting pct yes prop 16 on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.036 0.125∗∗ 0.133∗∗

(0.025) (0.025) (0.051) (0.051)

pct white 0.023 0.032 0.318 0.268
(0.075) (0.075) (0.209) (0.209)

pct asian −0.065 −0.057 0.238 0.197
(0.075) (0.075) (0.193) (0.193)

pct some college −0.002 −0.017 0.089 0.130
(0.134) (0.134) (0.465) (0.462)

pct bachelors 0.137 0.126 −0.206 −0.173
(0.136) (0.135) (0.435) (0.431)

pct democrat 0.041 0.072 0.233 0.208
(0.175) (0.176) (0.509) (0.505)

population 0.018 0.013 0.037 0.030
(0.048) (0.048) (0.096) (0.095)

med age −0.001 −0.002 0.006 0.004
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.587∗∗∗ 0.194 0.660∗∗

(0.097) (0.213) (0.197) (0.318)

pct yes prop 16.seg.r −0.391∗ −0.725∗

(0.235) (0.390)

pct yes prop 23 −0.162 −0.146 −0.146 −0.207
(0.190) (0.190) (0.589) (0.585)

pct trump −0.116∗∗ −0.116∗∗ −0.275 −0.265
(0.051) (0.051) (0.176) (0.175)

pct manufacturing −0.327∗∗ −0.336∗∗ −0.907∗∗ −0.989∗∗∗

(0.163) (0.163) (0.355) (0.355)

pct agri 0.008 −0.002 0.575 0.543
(0.107) (0.107) (0.355) (0.353)

hydro 0.008 0.006 −0.042 −0.046
(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.045 0.047 0.073
(0.045) (0.045) (0.149) (0.149)

temp jan 0.047∗∗∗ 0.047∗∗∗ −0.011 −0.005
(0.014) (0.014) (0.052) (0.051)

temp aug 0.036∗∗∗ 0.037∗∗∗ 0.065∗ 0.075∗∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.796∗∗∗ 34.451∗∗∗ 33.980∗∗∗

(0.345) (0.349) (5.654) (5.614)

not PGE SCE −0.194∗∗∗ −0.189∗∗∗ 0.051 0.042
(0.024) (0.024) (0.159) (0.158)

Constant −0.081 −0.203 −0.363 −0.559
(0.188) (0.202) (0.518) (0.525)

Observations 458 458 172 172
Log Likelihood 368.399 369.839 95.348 97.295
Akaike Inf. Crit. −696.797 −697.678 −150.696 −152.591

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

92



Table B10: Effect of Segmenting pct yes prop 23 on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.037 0.125∗∗ 0.101∗∗

(0.025) (0.025) (0.051) (0.050)

pct white 0.023 0.011 0.318 0.363∗

(0.075) (0.076) (0.209) (0.203)

pct asian −0.065 −0.072 0.238 0.280
(0.075) (0.075) (0.193) (0.188)

pct some college −0.002 0.020 0.089 0.090
(0.134) (0.135) (0.465) (0.451)

pct bachelors 0.137 0.152 −0.206 −0.150
(0.136) (0.136) (0.435) (0.422)

pct democrat 0.041 0.025 0.233 0.487
(0.175) (0.176) (0.509) (0.499)

population 0.018 0.019 0.037 0.030
(0.048) (0.048) (0.096) (0.093)

med age −0.001 0.001 0.006 −0.007
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.285∗∗∗ 0.194 0.093
(0.097) (0.097) (0.197) (0.194)

pct yes prop 23 −0.162 −0.265 −0.146 3.715∗∗∗

(0.190) (0.206) (0.589) (1.313)

pct yes prop 23.seg.r 0.273 −3.762∗∗∗

(0.212) (1.152)

pct trump −0.116∗∗ −0.110∗∗ −0.275 −0.254
(0.051) (0.052) (0.176) (0.171)

pct manufacturing −0.327∗∗ −0.326∗∗ −0.907∗∗ −0.945∗∗∗

(0.163) (0.163) (0.355) (0.345)

pct agri 0.008 0.020 0.575 0.571∗

(0.107) (0.107) (0.355) (0.345)

hydro 0.008 0.009 −0.042 −0.052∗

(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.048 0.047 0.076
(0.045) (0.045) (0.149) (0.145)

temp jan 0.047∗∗∗ 0.048∗∗∗ −0.011 −0.023
(0.014) (0.014) (0.052) (0.050)

temp aug 0.036∗∗∗ 0.036∗∗∗ 0.065∗ 0.074∗∗

(0.013) (0.013) (0.035) (0.034)

lse size −3.881∗∗∗ −3.874∗∗∗ 34.451∗∗∗ 36.999∗∗∗

(0.345) (0.345) (5.654) (5.538)

not PGE SCE −0.194∗∗∗ −0.194∗∗∗ 0.051 0.060
(0.024) (0.024) (0.159) (0.154)

Constant −0.081 −0.072 −0.363 −1.116∗∗

(0.188) (0.188) (0.518) (0.553)

Observations 458 458 172 172
Log Likelihood 368.399 369.265 95.348 101.212
Akaike Inf. Crit. −696.797 −696.530 −150.696 −160.424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B11: Effect of Segmenting pct trump on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.033 0.125∗∗ 0.106∗∗

(0.025) (0.025) (0.051) (0.051)

pct white 0.023 0.012 0.318 0.343∗

(0.075) (0.075) (0.209) (0.206)

pct asian −0.065 −0.070 0.238 0.250
(0.075) (0.075) (0.193) (0.190)

pct some college −0.002 0.006 0.089 0.156
(0.134) (0.134) (0.465) (0.457)

pct bachelors 0.137 0.162 −0.206 −0.133
(0.136) (0.136) (0.435) (0.428)

pct democrat 0.041 0.088 0.233 0.177
(0.175) (0.178) (0.509) (0.500)

population 0.018 0.016 0.037 0.063
(0.048) (0.048) (0.096) (0.094)

med age −0.001 0.0004 0.006 0.001
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.273∗∗∗ 0.194 0.172
(0.097) (0.097) (0.197) (0.194)

pct yes prop 23 −0.162 −0.106 −0.146 0.092
(0.190) (0.193) (0.589) (0.585)

pct trump −0.116∗∗ −0.175∗∗∗ −0.275 3.013∗∗

(0.051) (0.064) (0.176) (1.278)

pct trump.seg.r 0.239 −3.597∗∗

(0.155) (1.385)

pct manufacturing −0.327∗∗ −0.321∗∗ −0.907∗∗ −1.009∗∗∗

(0.163) (0.163) (0.355) (0.351)

pct agri 0.008 0.003 0.575 0.582∗

(0.107) (0.107) (0.355) (0.349)

hydro 0.008 0.009 −0.042 −0.045
(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.051 0.047 0.033
(0.045) (0.045) (0.149) (0.147)

temp jan 0.047∗∗∗ 0.050∗∗∗ −0.011 −0.032
(0.014) (0.014) (0.052) (0.051)

temp aug 0.036∗∗∗ 0.034∗∗∗ 0.065∗ 0.068∗∗

(0.013) (0.013) (0.035) (0.034)

lse size −3.881∗∗∗ −3.867∗∗∗ 34.451∗∗∗ 36.358∗∗∗

(0.345) (0.345) (5.654) (5.598)

not PGE SCE −0.194∗∗∗ −0.193∗∗∗ 0.051 0.049
(0.024) (0.024) (0.159) (0.156)

Constant −0.081 −0.126 −0.363 −0.647
(0.188) (0.190) (0.518) (0.520)

Observations 458 458 172 172
Log Likelihood 368.399 369.651 95.348 99.107
Akaike Inf. Crit. −696.797 −697.301 −150.696 −156.214

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B12: Effect of Segmenting pct manufacturing on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.036 0.125∗∗ 0.111∗∗

(0.025) (0.025) (0.051) (0.052)

pct white 0.023 0.017 0.318 0.261
(0.075) (0.075) (0.209) (0.211)

pct asian −0.065 −0.070 0.238 0.192
(0.075) (0.074) (0.193) (0.194)

pct some college −0.002 −0.009 0.089 0.001
(0.134) (0.134) (0.465) (0.466)

pct bachelors 0.137 0.130 −0.206 −0.220
(0.136) (0.135) (0.435) (0.432)

pct democrat 0.041 0.035 0.233 0.166
(0.175) (0.175) (0.509) (0.507)

population 0.018 0.016 0.037 0.028
(0.048) (0.048) (0.096) (0.095)

med age −0.001 0.001 0.006 0.016
(0.011) (0.011) (0.023) (0.024)

pct yes prop 16 0.272∗∗∗ 0.270∗∗∗ 0.194 0.145
(0.097) (0.096) (0.197) (0.198)

pct yes prop 23 −0.162 −0.166 −0.146 −0.124
(0.190) (0.189) (0.589) (0.586)

pct trump −0.116∗∗ −0.111∗∗ −0.275 −0.257
(0.051) (0.051) (0.176) (0.176)

pct manufacturing −0.327∗∗ 2.659∗ −0.907∗∗ 4.176
(0.163) (1.438) (0.355) (3.110)

pct manufacturing.seg.r −3.106∗∗ −5.290
(1.486) (3.216)

pct agri 0.008 −0.009 0.575 0.478
(0.107) (0.107) (0.355) (0.358)

hydro 0.008 0.008 −0.042 −0.048∗

(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.050 0.047 0.056
(0.045) (0.044) (0.149) (0.149)

temp jan 0.047∗∗∗ 0.044∗∗∗ −0.011 −0.011
(0.014) (0.014) (0.052) (0.051)

temp aug 0.036∗∗∗ 0.034∗∗∗ 0.065∗ 0.060∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.868∗∗∗ 34.451∗∗∗ 34.268∗∗∗

(0.345) (0.344) (5.654) (5.623)

not PGE SCE −0.194∗∗∗ −0.195∗∗∗ 0.051 0.027
(0.024) (0.024) (0.159) (0.159)

Constant −0.081 −0.144 −0.363 −0.382
(0.188) (0.190) (0.518) (0.515)

Observations 458 458 172 172
Log Likelihood 368.399 370.677 95.348 96.876
Akaike Inf. Crit. −696.797 −699.354 −150.696 −151.752

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B13: Effect of Segmenting pct agri on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.038 0.125∗∗ 0.126∗∗

(0.025) (0.025) (0.051) (0.051)

pct white 0.023 0.050 0.318 0.299
(0.075) (0.078) (0.209) (0.209)

pct asian −0.065 −0.039 0.238 0.201
(0.075) (0.077) (0.193) (0.194)

pct some college −0.002 −0.022 0.089 0.161
(0.134) (0.135) (0.465) (0.466)

pct bachelors 0.137 0.133 −0.206 −0.195
(0.136) (0.135) (0.435) (0.433)

pct democrat 0.041 0.103 0.233 0.204
(0.175) (0.181) (0.509) (0.507)

population 0.018 0.021 0.037 0.045
(0.048) (0.048) (0.096) (0.095)

med age −0.001 −0.002 0.006 0.003
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.314∗∗∗ 0.194 0.174
(0.097) (0.101) (0.197) (0.197)

pct yes prop 23 −0.162 −0.142 −0.146 −0.178
(0.190) (0.190) (0.589) (0.587)

pct trump −0.116∗∗ −0.114∗∗ −0.275 −0.288
(0.051) (0.051) (0.176) (0.176)

pct manufacturing −0.327∗∗ −0.348∗∗ −0.907∗∗ −0.905∗∗

(0.163) (0.164) (0.355) (0.354)

pct agri 0.008 0.284 0.575 −17.621
(0.107) (0.224) (0.355) (12.265)

pct agri.seg.r −0.415 18.217
(0.296) (12.274)

hydro 0.008 0.011 −0.042 −0.051∗

(0.007) (0.007) (0.028) (0.029)

pv −0.047 −0.048 0.047 0.055
(0.045) (0.045) (0.149) (0.149)

temp jan 0.047∗∗∗ 0.048∗∗∗ −0.011 −0.015
(0.014) (0.014) (0.052) (0.052)

temp aug 0.036∗∗∗ 0.036∗∗∗ 0.065∗ 0.070∗∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.883∗∗∗ 34.451∗∗∗ 35.510∗∗∗

(0.345) (0.345) (5.654) (5.676)

not PGE SCE −0.194∗∗∗ −0.193∗∗∗ 0.051 0.070
(0.024) (0.024) (0.159) (0.159)

Constant −0.081 −0.153 −0.363 −0.300
(0.188) (0.195) (0.518) (0.518)

Observations 458 458 172 172
Log Likelihood 368.399 369.424 95.348 96.594
Akaike Inf. Crit. −696.797 −696.849 −150.696 −151.187

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B14: Effect of Segmenting hydro on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.057∗∗ 0.125∗∗ 0.120∗∗

(0.025) (0.026) (0.051) (0.052)

pct white 0.023 −0.002 0.318 0.322
(0.075) (0.075) (0.209) (0.209)

pct asian −0.065 −0.062 0.238 0.232
(0.075) (0.074) (0.193) (0.194)

pct some college −0.002 0.023 0.089 0.088
(0.134) (0.134) (0.465) (0.465)

pct bachelors 0.137 0.148 −0.206 −0.191
(0.136) (0.135) (0.435) (0.435)

pct democrat 0.041 0.058 0.233 0.187
(0.175) (0.174) (0.509) (0.512)

population 0.018 0.014 0.037 0.049
(0.048) (0.048) (0.096) (0.097)

med age −0.001 0.00002 0.006 0.004
(0.011) (0.011) (0.023) (0.024)

pct yes prop 16 0.272∗∗∗ 0.272∗∗∗ 0.194 0.221
(0.097) (0.096) (0.197) (0.200)

pct yes prop 23 −0.162 −0.187 −0.146 −0.124
(0.190) (0.189) (0.589) (0.590)

pct trump −0.116∗∗ −0.121∗∗ −0.275 −0.287
(0.051) (0.051) (0.176) (0.177)

pct manufacturing −0.327∗∗ −0.338∗∗ −0.907∗∗ −0.971∗∗∗

(0.163) (0.162) (0.355) (0.363)

pct agri 0.008 0.032 0.575 0.561
(0.107) (0.106) (0.355) (0.356)

hydro 0.008 19.846∗∗∗ −0.042 −0.542
(0.007) (7.396) (0.028) (0.572)

hydro.seg.r −19.847∗∗∗ 0.552
(7.400) (0.633)

pv −0.047 −0.040 0.047 0.001
(0.045) (0.044) (0.149) (0.158)

temp jan 0.047∗∗∗ 0.042∗∗∗ −0.011 −0.032
(0.014) (0.014) (0.052) (0.057)

temp aug 0.036∗∗∗ 0.029∗∗ 0.065∗ 0.073∗∗

(0.013) (0.013) (0.035) (0.036)

lse size −3.881∗∗∗ −4.080∗∗∗ 34.451∗∗∗ 32.895∗∗∗

(0.345) (0.351) (5.654) (5.932)

not PGE SCE −0.194∗∗∗ −0.207∗∗∗ 0.051 0.060
(0.024) (0.024) (0.159) (0.160)

Constant −0.081 −0.056 −0.363 −0.281
(0.188) (0.187) (0.518) (0.527)

Observations 458 458 172 172
Log Likelihood 368.399 372.138 95.348 95.782
Akaike Inf. Crit. −696.797 −702.275 −150.696 −149.563

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B15: Effect of Segmenting pv on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.038 0.125∗∗ 0.122∗∗

(0.025) (0.025) (0.051) (0.051)

pct white 0.023 0.010 0.318 0.302
(0.075) (0.075) (0.209) (0.209)

pct asian −0.065 −0.065 0.238 0.229
(0.075) (0.074) (0.193) (0.193)

pct some college −0.002 0.005 0.089 0.078
(0.134) (0.133) (0.465) (0.463)

pct bachelors 0.137 0.133 −0.206 −0.197
(0.136) (0.135) (0.435) (0.433)

pct democrat 0.041 0.032 0.233 0.311
(0.175) (0.174) (0.509) (0.509)

population 0.018 0.049 0.037 0.078
(0.048) (0.050) (0.096) (0.099)

med age −0.001 −0.003 0.006 0.003
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.240∗∗ 0.194 0.167
(0.097) (0.097) (0.197) (0.197)

pct yes prop 23 −0.162 −0.159 −0.146 −0.052
(0.190) (0.189) (0.589) (0.590)

pct trump −0.116∗∗ −0.114∗∗ −0.275 −0.253
(0.051) (0.051) (0.176) (0.176)

pct manufacturing −0.327∗∗ −0.340∗∗ −0.907∗∗ −0.848∗∗

(0.163) (0.163) (0.355) (0.356)

pct agri 0.008 0.020 0.575 0.570
(0.107) (0.106) (0.355) (0.354)

hydro 0.008 0.006 −0.042 −0.051∗

(0.007) (0.007) (0.028) (0.029)

pv −0.047 −19,552,648.000∗∗ 0.047 −44.953
(0.045) (7,832,573.000) (0.149) (29.602)

pv.seg.r 19,552,648.000∗∗ 45.022
(7,832,573.000) (29.616)

temp jan 0.047∗∗∗ 0.044∗∗∗ −0.011 −0.007
(0.014) (0.014) (0.052) (0.052)

temp aug 0.036∗∗∗ 0.043∗∗∗ 0.065∗ 0.074∗∗

(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −3.976∗∗∗ 34.451∗∗∗ 33.447∗∗∗

(0.345) (0.346) (5.654) (5.668)

not PGE SCE −0.194∗∗∗ −0.200∗∗∗ 0.051 0.027
(0.024) (0.024) (0.159) (0.159)

Constant −0.081 −0.080 −0.363 −0.469
(0.188) (0.187) (0.518) (0.520)

Observations 458 458 172 172
Log Likelihood 368.399 371.641 95.348 96.654
Akaike Inf. Crit. −696.797 −701.282 −150.696 −151.309

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B16: Effect of Segmenting temp jan on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.062∗∗ 0.125∗∗ 0.142∗∗∗

(0.025) (0.026) (0.051) (0.051)

pct white 0.023 0.008 0.318 0.328
(0.075) (0.075) (0.209) (0.207)

pct asian −0.065 −0.067 0.238 0.263
(0.075) (0.074) (0.193) (0.192)

pct some college −0.002 0.016 0.089 0.028
(0.134) (0.133) (0.465) (0.461)

pct bachelors 0.137 0.091 −0.206 −0.278
(0.136) (0.136) (0.435) (0.432)

pct democrat 0.041 −0.013 0.233 0.286
(0.175) (0.175) (0.509) (0.504)

population 0.018 0.012 0.037 0.032
(0.048) (0.048) (0.096) (0.095)

med age −0.001 −0.003 0.006 0.0004
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.225∗∗ 0.194 0.173
(0.097) (0.097) (0.197) (0.195)

pct yes prop 23 −0.162 −0.282 −0.146 −0.136
(0.190) (0.193) (0.589) (0.583)

pct trump −0.116∗∗ −0.101∗∗ −0.275 −0.254
(0.051) (0.051) (0.176) (0.175)

pct manufacturing −0.327∗∗ −0.364∗∗ −0.907∗∗ −0.881∗∗

(0.163) (0.163) (0.355) (0.352)

pct agri 0.008 0.023 0.575 0.537
(0.107) (0.106) (0.355) (0.352)

hydro 0.008 0.003 −0.042 −0.050∗

(0.007) (0.007) (0.028) (0.028)

pv −0.047 −0.040 0.047 0.063
(0.045) (0.044) (0.149) (0.148)

temp jan 0.047∗∗∗ 0.002 −0.011 −0.084
(0.014) (0.021) (0.052) (0.062)

temp jan.seg.r 0.141∗∗∗ 0.497∗∗

(0.051) (0.242)

temp aug 0.036∗∗∗ 0.043∗∗∗ 0.065∗ 0.050
(0.013) (0.013) (0.035) (0.035)

lse size −3.881∗∗∗ −4.175∗∗∗ 34.451∗∗∗ 34.573∗∗∗

(0.345) (0.359) (5.654) (5.595)

not PGE SCE −0.194∗∗∗ −0.216∗∗∗ 0.051 0.081
(0.024) (0.025) (0.159) (0.158)

Constant −0.081 0.168 −0.363 0.121
(0.188) (0.207) (0.518) (0.564)

Observations 458 458 172 172
Log Likelihood 368.399 372.381 95.348 97.713
Akaike Inf. Crit. −696.797 −702.763 −150.696 −153.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B17: Effect of Segmenting temp aug on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.033 0.125∗∗ 0.110∗∗

(0.025) (0.025) (0.051) (0.052)

pct white 0.023 0.011 0.318 0.339
(0.075) (0.075) (0.209) (0.209)

pct asian −0.065 −0.078 0.238 0.253
(0.075) (0.074) (0.193) (0.193)

pct some college −0.002 −0.043 0.089 0.076
(0.134) (0.133) (0.465) (0.463)

pct bachelors 0.137 0.102 −0.206 −0.188
(0.136) (0.135) (0.435) (0.433)

pct democrat 0.041 −0.001 0.233 0.322
(0.175) (0.174) (0.509) (0.509)

population 0.018 0.017 0.037 0.040
(0.048) (0.048) (0.096) (0.095)

med age −0.001 −0.00002 0.006 0.011
(0.011) (0.011) (0.023) (0.023)

pct yes prop 16 0.272∗∗∗ 0.268∗∗∗ 0.194 0.227
(0.097) (0.096) (0.197) (0.197)

pct yes prop 23 −0.162 −0.198 −0.146 0.004
(0.190) (0.188) (0.589) (0.594)

pct trump −0.116∗∗ −0.107∗∗ −0.275 −0.293∗

(0.051) (0.051) (0.176) (0.176)

pct manufacturing −0.327∗∗ −0.505∗∗∗ −0.907∗∗ −1.056∗∗∗

(0.163) (0.171) (0.355) (0.366)

pct agri 0.008 −0.017 0.575 0.541
(0.107) (0.106) (0.355) (0.354)

hydro 0.008 0.005 −0.042 −0.032
(0.007) (0.007) (0.028) (0.029)

pv −0.047 −0.024 0.047 0.089
(0.045) (0.045) (0.149) (0.151)

temp jan 0.047∗∗∗ 0.051∗∗∗ −0.011 0.061
(0.014) (0.014) (0.052) (0.069)

temp aug 0.036∗∗∗ 0.113∗∗∗ 0.065∗ 0.142∗∗

(0.013) (0.028) (0.035) (0.059)

temp aug.seg.r −0.120∗∗∗ −0.188
(0.038) (0.119)

lse size −3.881∗∗∗ −3.904∗∗∗ 34.451∗∗∗ 27.164∗∗∗

(0.345) (0.342) (5.654) (7.284)

not PGE SCE −0.194∗∗∗ −0.205∗∗∗ 0.051 −0.026
(0.024) (0.024) (0.159) (0.166)

Constant −0.081 −0.527∗∗ −0.363 −1.303
(0.188) (0.234) (0.518) (0.788)

Observations 458 458 172 172
Log Likelihood 368.399 373.544 95.348 96.750
Akaike Inf. Crit. −696.797 −705.089 −150.696 −151.500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B18: Effect of Segmenting lse size on Model Fit

Linear (CCA & IOU) Piecewise (CCA & IOU) Linear (CCA Only) Piecewise (CCA Only)

med income 0.037 0.032 0.125∗∗ 0.155∗∗∗

(0.025) (0.024) (0.051) (0.050)

pct white 0.023 0.034 0.318 0.399∗∗

(0.075) (0.071) (0.209) (0.201)

pct asian −0.065 −0.040 0.238 0.327∗

(0.075) (0.071) (0.193) (0.186)

pct some college −0.002 −0.079 0.089 −0.012
(0.134) (0.128) (0.465) (0.445)

pct bachelors 0.137 0.055 −0.206 −0.397
(0.136) (0.129) (0.435) (0.418)

pct democrat 0.041 0.137 0.233 0.356
(0.175) (0.167) (0.509) (0.487)

population 0.018 −0.011 0.037 0.041
(0.048) (0.046) (0.096) (0.091)

med age −0.001 0.004 0.006 0.003
(0.011) (0.010) (0.023) (0.022)

pct yes prop 16 0.272∗∗∗ 0.231∗∗ 0.194 0.080
(0.097) (0.092) (0.197) (0.191)

pct yes prop 23 −0.162 −0.120 −0.146 −0.064
(0.190) (0.180) (0.589) (0.563)

pct trump −0.116∗∗ −0.049 −0.275 −0.308∗

(0.051) (0.050) (0.176) (0.169)

pct manufacturing −0.327∗∗ −0.331∗∗ −0.907∗∗ −0.738∗∗

(0.163) (0.155) (0.355) (0.342)

pct agri 0.008 −0.071 0.575 0.349
(0.107) (0.102) (0.355) (0.344)

hydro 0.008 0.002 −0.042 −0.047∗

(0.007) (0.007) (0.028) (0.027)

pv −0.047 −0.028 0.047 0.064
(0.045) (0.042) (0.149) (0.143)

temp jan 0.047∗∗∗ 0.035∗∗ −0.011 −0.120∗∗

(0.014) (0.014) (0.052) (0.057)

temp aug 0.036∗∗∗ 0.023∗ 0.065∗ 0.002
(0.013) (0.012) (0.035) (0.037)

lse size −3.881∗∗∗ 17.172∗∗∗ 34.451∗∗∗ −518.096∗∗∗

(0.345) (3.027) (5.654) (140.028)

lse size.seg.r −22.532∗∗∗ 571.490∗∗∗

(3.221) (144.721)

not PGE SCE −0.194∗∗∗ −0.198∗∗∗ 0.051 −0.189
(0.024) (0.023) (0.159) (0.164)

Constant −0.081 −0.039 −0.363 0.996
(0.188) (0.179) (0.518) (0.603)

Observations 458 458 172 172
Log Likelihood 368.399 392.704 95.348 103.800
Akaike Inf. Crit. −696.797 −743.408 −150.696 −165.600

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

101


	Abstract
	I.  Introduction
	IV.  Descriptive Statistics
	VI.  Discussion

